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Abstract - To meet time-to-market demands, it is crucial that 
improvement be made to the system design efficiency. By utilizing a 
reusable design methodology, it is possible to meet project 
management requirements. Component integrations may often fail 
due to concurrency concerns. These concurrency problems mainly 
occur when components access share resources simultaneously and 
communicate with each other. If these problems are not addressed 
then a system could lead to sporadic and disastrous failures. In this 
paper, we propose a methodology for developing concurrency 
compliant components from a requirements document. We have 
applied this methodology to develop process management and 
memory management aspects of a Real Time Operating System 
(RTOS).   
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1. INTRODUCTION 
 

During the previous decade one could enhance the system 
performance by simply increasing the clock speeds. 
International Technology Roadmap of Semiconductors (ITRS) 
predicts that the saturation point for these clock speeds is 
nearing [1]. Thus, we need to find other innovative ways of 
further enhancing performance. One way that could help in 
this direction is by exploiting concurrency [2]. The concept of 
concurrency is essential to multiprocessing and distributed 
system environments and, at the same time, allows us to see a 
set of interacting objects as a collection of concurrent 
processes whose behavior can be observed by means of all 
their possible interactions. Concurrency may also help in 
reducing the overall system power consumption. Software 
developers have realized the need for concurrency and have 
started using multithreaded programming models for 
embedded system designs. Multithreaded Java and pthreads 
are two examples for incorporating concurrency [3]. However, 
in most cases concurrent processing has been overshadowed 
by a failure to achieve synchronization. Unified system design 
frameworks, such as Ptolemy, use Java as a backbone to 
address concurrency issues [4]. But the main issue is to be 
able to analyze whether after following all the steps for 
designing a concurrent system, the new system design still has 
any concurrency concerns. There are various models of 
computation (MOC) which can achieve concurrency [5]. 
Some of these MOCs include communicating sequential 
processes (CSP) [6], pi-calculus [7], lambda calculus [8] and 
finite state machines (FSM) [9]. CSP, pi-calculus and lambda-
calculus offer an effective mechanism of specification and 
verification [10]. Pi-calculus is a well-defined process algebra 
that can be used to describe and analyze process systems. It 
allows mobility of communication channels, includes an 

operational semantics, and can be extended to a higher-order 
calculus, where not only channels but whole processes can be 
transferred [11]. However, they are based on mathematical 
models; they are not only hard to understand for a 
software/hardware designer but also hard to apply practically.  

To meet increasing user demands for more reliable, 
scalable, and efficient real-time and embedded systems, the 
computer industry has progressed towards utilizing 
development, verification, and debugging tools. These tools 
are needed to automate the challenging manual process, for 
instance fulfilling non-functional requirements, integrating 
components, discovering bugs, optimizing performance, and 
checking that code represents design models and 
requirements. The objective is to discover bugs earlier in 
design/development phases, and knowing limitations of the 
tools and the methods being utilized.  

Currently there are many modeling tools that are available 
and by integrating specific tools, it is possible to meet the user 
requirements. Finite State Processes (FSP) and Labeled 
Transition System Analyzer (LTSA) provide a framework for 
modeling concurrency and analyzing it exhaustively [12]. FSP 
is a language based on the CSP. But unlike CSP a system 
designer will not have to analyze the system specification in 
the form of a mathematical model in order to expose 
concurrency issues in the system. We can develop a simplified 
concurrency model in FSP and analyze the concurrency issues 
with LTSA graphically. LTSA also provides a capability of 
exhaustive analysis to uncover synchronization issues such as 
deadlocks and livelocks. 

LTSA-MSC is a tool that is an addition to LTSA (Labeled 
Transition System Analyzer) that includes all the MSC 
(Message Sequence Chart) related features.  The tool depends 
on the model-checking services, FSP code editor and the 
common interface arrangement that LTSA already offers. This 
MSC plug-in, in addition, provides a command line synthesis 
tool that takes as an input a text file holding an MSC 
specification and outputs a FSP specification that can be 
utilized in the stand-alone version of LTSA. The hMSC (high 
Message Sequence Chart) editor allows making, connecting 
and reordering bMSC (basic Message Sequence Chart) nodes. 
At any time, the FSP code can be generated for the three main 
behavior models (architecture, trace and constraint models) 
with the property declarations required for verifying 
consistency and detecting implied scenarios.  The designer can 
modify the FSP code for the architecture model. 
 
 
 

2. BACKGROUND 



 
2.1. Concurrency in an Operating System 

An operating system (OS) allocates resources such as CPU 
and memory to a process.  A process is characterized by the 
state of the machine registers, data and its code. The process’s 
data are prepared as stack of global variables and local 
variables. Usually a process is assigned by an OS its own 
address space. Other processes can access shared data by a 
unique method [12].   

In order for an application program to run on an OS similar 
to Unix, it requires the following steps: allocate memory for 
the process, load partial or complete code of the process into 
memory, execute the code by loading the location of the first 
instruction into the program counter register, and the location 
of its stack into the stack pointer register. The OS keeps a 
process descriptor, which is its own data structure that records 
specifics, like scheduling priority, allocated memory and the 
values of machine registers while the process is not being 
executed [12]. 

If a process has a single thread of control it does not have 
any internal concurrency. On the other hand, a process might 
have several lightweight processes or threads. If so, internal 
concurrency becomes an issue. With the arrival of multi-core 
architectures, software decomposition to better utilize the 
processing power will spawn off many concurrent processes.  
If they are not managed properly, concurrency failures will 
result. 

 
2.2. Abstract Model of an RTOS 

Hessel’s RTOS model implements two other types of 
services: OS Management and Task Management [13].  

OS Management services support initialization of the 
RTOS. The signal_init initializes the pertinent RTOS data 
structure and begins the multitasking scheduling. The 
signal_reset reinitializes the RTOS for verification reasons. 
For the preemption and resume tasks to occur during the run 
time, they present two primitives: suspend and resume. These 
primitives get the task ID as parameters [13]. 

Task Management services support the interface between 
the kernel and the system application. One of its functions is 
to give the user a simple way to express an application as a 
group of tasks. These researchers modeled the task in such a 
way that it contains all the essential information to run. They 
implemented the entire task as a PosixThread, so that 
preemption and resume by the scheduler can take place.  At 
the system level, the main focus was not specific task 
functionality; instead the focus is the time it takes to compute 
and communicate tasks. From this angle, the first duty of the 
RTOS is to decide the next process to run, e.g. to choose the 
sequence to run tasks. Task management, carried out by the 
scheduler, is the main job in the RTOS model [13].   

The Scheduler model regards each task as a single thread. 
If a task is suspended it waits for a resume command from the 
scheduler; otherwise, a task can run when it receives a run 
command from the scheduler.  The task will get this command 
if it acquired the necessary data and the scheduler picks the 
task as the next one to run. When the task has completed its 

processing in the present cycle, it signals the scheduler and 
moves to the idle state.  The task also moves to the idle state if 
it needs data that is unavailable.  If non-periodic task is done 
processing, it signals the ending to the scheduler.  In this 
situation, the scheduler terminates the task.  If the task does 
move to the idle or ready states, the scheduler picks a task to 
run from the ready tasks according to scheduler algorithm. On 
the other hand, if a ready list is empty, the scheduler simply 
waits for a ready task [13].    

Hessel’s RTOS synchronization model offers services to 
coordinate the concurrent and the cooperative tasks, providing 
methods to deal with the inter-processor and the intra-
processor synchronization issues. This model proposes two 
primitives: wait and notify.  Invoking the wait method makes 
the current task to wait, pending on another task invokes the 
notify method, or a set amount of time has passed.  When this 
takes place, the task moves to the idle state, entering the 
waiting list and the task can not be scheduled. The notify 
method awakens a task that is waiting for data 
synchronization. 

 
3. METHODOLOGY 

 
We propose a modeling methodology for designing 

embedded systems. In this methodology, we start from a 
“customer’s” requirement document that is then mapped to an 
activity diagram, a swimlane diagram, class diagrams, and 
use-case diagrams. To evolve a concurrency compliant design, 
we used the Message Sequence Chart plug-in for the Label 
Transition State Analyzer (LTSA). Later, we use MLDesigner 
to model and simulate our system [14]. 

 

 
Fig. 1: Overview of our modeling methodology. 

 
Our modeling methodology shown in Fig. 1 has three steps. 

In the first step, we used UML (Unified Modeling Language) 
diagrams in developing our design for an RTOS.  We 
researched into the current RTOS and its characteristics.  
These backgrounds help us think of an RTOS as a service 
provider for arriving processes. Basically, all the RTOS 
activities that occur while a process is being serviced were 
depicted in the UML activity diagram.  Next, the relationship 
between the activities and the components of the RTOS were 
shown using a swimlane diagram. We further considered the 
relationship of a component of an RTOS with other 
components of the RTOS that it needed to carry out its 
functionalities. We displayed this information using UML 



class diagrams. Each of the operations of a class in a class 
diagram is a scenario for a use case diagram in which a 
component participates with the other components as actors. 

In the second step of our methodology, we performed 
concurrency modeling. We checked our RTOS model for 
deadlock, safety and liveness properties. Deadlock occurs 
when every process is blocked in a system and the system, as 
a result, can make no additional progress. A safety property 
confirms that no error occurs while a program runs and a 
liveness property confirms that a progress eventually occurs.  
We used our UML diagrams from step 1 to help us draw 
MSCs using LTSA-MSC. The MSC shows the interaction 
between components that occur in a scenario. After creating 
the MSCs (hMSC and bMSC), these diagrams were 
synthesized to FSP code, compiled, and composed in LTSA-
MSC.  Next, we checked for deadlock, and if there was any 
deadlock we modified our MSC until deadlock was resolved.  
After deadlock, we checked for safety property by pressing the 
implied scenario detection button, and this shows us if there is 
any property violation.  Our model did not have any property 
violation, so we did not have any implied scenario.  If there is 
a property violation, then a bMSC will show that implied 
scenario. In that case, we will decide if it is a positive (e.g., 
desirable scenario) or negative scenario (e.g., undesirable 
scenario). Also note that the MSC was not fully exploited to 
identify all concurrency issues across use cases, due to MSC 
tool constraints (memory requirements).  

In the third and last step, we modeled our components in 
MLDesigner (Mission Level Design modeling tool) to show 
our methodology. When moving to MLDesigner, the previous 
concurrency work was used as a starting point and reference 
for the MLDesigner model. The concurrency modeling 
defined what components made up the design, and what the 
functionality of each component was, allowing us to skip this 
when using MLDesigner and go straight to modeling.  We 
were able to start off knowing exactly what we were 
modeling, what each component was to do, and how 
everything was connected.  For instance, when creating the 
Scheduler, the fact that it needed two queues, would schedule 
based on priority, and was connected to the Memory Manager 
was known. MLDesigner was simply an implementation of 
that design.  The only real challenge at this point was the 
actual translation to MLDesigner, i.e. moving the functionality 
from UML to MLDesigner graphical design tool.  

We decided to base our model on the CPU demo, since it 
already incorporated many of the functionalities that we 
needed such as the creation and consumption of a process.  To 
this we added the extra parameters we needed.  Because of 
this and because of the way our RTOS works, we chose to use 
the DE (Discrete Event) domain in MLDesigner. This models 
the RTOS as a system of discrete, time-stamped events.  This 
was necessary since time is a big part of the RTOS.  One of 
the helpful aspects about using MLDesigner was that we were 
able to use a number of pre-built components in our model, to 
directly modify our Process data structure. This shortened our 
development time and made it easier to get our model up and 
running quickly [15]. 

 
3.1. Requirements 

We developed our activity diagram as depicted in Fig. 2 
from the point of view of a process.  When a process arrives, it 
sends a request for memory and if the memory is unavailable, 
it waits in the priority queue. If the memory is available and 
the processor is unavailable, it waits in the ready queue for the 
processor to be available [15].   

While the process is running on the processor and an 
interrupt occurs then interrupt handling takes place. If 
cooperation is needed from another process, the synchronizer 
coordinates the communication between processes. Once the 
process stops running, the resources are returned and the 
processor is once again available for other processes.  The 
Monitor gathers information mainly from two queues, which 
are part of processor and Memory Manager. The Monitor 
provides information to the OS Manager, which in turn 
optimizes data flow. Next, we developed the swimlane 
diagram that associates the components’ names with their 
activities that were provided in the activity diagram.  After the 
swimlane diagram, we move on to the class diagram that 
depicts the relationship of a component of the RTOS with 
other components to carry out certain functionalities. 

 

Scheduler

Process_list:int
Queue_list:int

Schedules():void
Assigns():void
Manages():void
Runs_on_Master():void

Ready_Queue

_manages

1

Priority_Queue

manages

1

Salve_CPU

assign_schedule

1

Process

schedules

1

OS_Manager

optimize_by

1

Master_CPU

runs_on1

 
Fig. 2: The class diagram for the scheduler. 

For example, Fig. 2 shows a Scheduler which runs on the 
Master CPU, schedules processes, assigns scheduling policies 
to the Slave CPU and manages two queues.  The OS Manager 
interacts with the Scheduler to optimize the Scheduler’s 
activities.  The Scheduler component has two attributes, the 
process list and the queue list.  It also has four operations: 
schedules, assigns, manages, and run on master, to perform its 
duties.  Once we are done with refining the class diagram, we 
create use cases.   



Scheduler

Schedules

Assigns

Manages

Runs_On_Master_CP
U

Master_CPU

Process

Slave_CPU

 
Fig. 3: The use case diagram for the scheduler. 

 
In the case of the Scheduler as shown in Fig. 3, components 

that interact with the Scheduler components are the actors that 
interact to perform scenarios, which are operations of the 
scheduler class.   The Scheduler components run on Master 
CPU, and the Slave CPU gets the process assigned from the 
scheduling policy. The Scheduler maintains the scheduling 
policy and manages processes.  If there is no interaction 
between an actor and the scenario, it means interaction is 
within the internal components and is not shown in the use 
case since it does not involve any actor.  
 
3.2. Concurrency Model for an RTOS 
 
Scheduler: In Fig. 4, the hMSC for the Scheduler connects 
three bMSCs. They are the Schedule Process, Ready Process, 
and No Ready Process. The Schedule Process in Fig. 5 shows 
that the scheduler assigns schedules to Ready Queue and 
Priority Queue. Then the Scheduler assigns a process to the 
Slave CPU and starts the process. 

The Ready Process in Fig. 6 shows that once the process 
stops running, the Scheduler checks if there is another process 
ready to run.  If there is more than one process in the Ready 
Queue, the scheduler selects the next process according to the 
assigned scheduling policy. The Scheduler assigns the selected 
process to run on the Slave CPU.  In Fig. 7, it is shown that if 
there is no more ready process then the Ready Queue signals 
“noReadyProcess” to the Scheduler. 
 

 
Fig. 4: The hMSC for the scheduler. 

 

 
Fig. 5: The bMSC for a Scheduler process. 

 

 
Fig. 6: The bMSC for a Ready process. 

 

 
Fig. 7: The bMSC for a Process not Ready. 

 
Once MSC specifications were completed, by pressing the 

synthesis button we generated the FSP code. The FSP code 
has a corresponding state machine (LTS) description.  Fig. 8 
illustrates the LTS (Labeled Transition System) state machine 
description for the interactions between Scheduler and Ready 
Queue. 

 

 
Fig. 8: Ready Queue LTS 

 



 
Fig. 9: LTSA analyzer for Scheduler 

 
We can instruct the LTSA analyzer tool to find deadlock 

states and to produce a sample trace of how these states that 
can engage in no further actions can be reached from the start 
state.  By performing a breadth-first search of the LTS graph, 
the LTSA tool guarantees that the sample trace is the shortest 
trace to the deadlock state. Fig. 9 shows the output produced 
by LTSA analyzer for the Scheduler model. 

 
Memory Manager: In Fig. 10, the hMSC for the Memory 
Manager connects bMSCs called Memory Allocation, 
Memory Unavailable, and Deallocates.  In Fig. 11, when a 
process arrives, it requests memory from the Memory 
Manager; if memory is available, the Memory Manager 
assigns the memory address to the process.        

 
Fig. 10: The hMSC for the Memory Manager. 

      

 
Fig 11: The bMSC for the available memory. 

 
In Fig. 12, if the memory is unavailable then the Memory 

Manager signals “outOfMemory” to the Process.  In Fig. 13, 
once the process is done using the memory, the Memory 
Manager frees the memory. 
 

 
Fig. 12: The bMSC for the unavailable memory. 

 

 
Fig. 13. The bMSC to deallocate memory. 

 
Fig. 14 illustrates the LTS state machine description for the 

interactions between Memory Manager and Memory. Fig. 15 
shows the output when the Memory Manager model is 
checked using the analyzer tool LTSA and find that it reports 
that there is no deadlock. 
 

 
Fig. 14: Memory LTSA. 

 

 
Fig 15: LTSA analyzer for Memory Manager. 

 
 
3.3. MLDesigner Modeling 



 
MLDesigner models can be used to measure different 

performance and quality of service characteristics, such as 
system performance, throughput, and delay.  The RTOS will 
be modeled in MLDesigner in the Discrete Event domain and 
will use a consumer/producer model. We currently have four 
components modeled: the Process, the Slave CPU, the 
Scheduler, and the Memory Manager as shown in Fig. 16. 
 

 
Fig. 16: The RTOS system. 

Consumer/Producer: The design for the RTOS in 
MLDesigner is based upon the “CPU Demo” example 
included in the software [14].  This demo models the 
production and consumption of packets by a single virtual 
CPU.  The RTOS model uses a modified version of the CPU 
Demo’s packet creation to model software processes that 
“run” in the RTOS.  
 

 
Fig. 17: The Process model. 

Fig. 17 shows that processes are modeled as data structures 
that contain relevant information about the process, such as 
memory requirement and the amount of CPU time required. 
The Slave CPU component of the RTOS incorporates 
elements of the CPU element from this demo model. Fig. 18 
shows that the Slave CPU is modeled in a basic way as a 
resource that is held by a process for a period of time and then 
freed.   
 

 
Fig. 18: The Slave CPU model. 

 
Scheduler: The Scheduler shown in Fig. 19 consists of a 
Priority Queue, its Controller, a Ready Queue, and a CPU 
“Manager”.  The Priority Queue contains processes that are 
waiting for memory and sorts them based on priority. Its 
Controller receives memory information from the Memory 
Manager, and releases the next item in the queue when enough 
memory is available.  Items in the Ready Queue are also 
sorted based on priority.   

The CPU “Manager” also functions as a manager for the 
Ready Queue. It keeps track of which CPUs are busy or 
available, releases the next item in the Ready Queue when a 
CPU is available and routes it to the appropriate CPU. 
  

 
Fig. 19: The Scheduler model. 

Memory Manager: The Memory Manager module depicted in 
Fig. 20 allocates and keeps track of the memory used by the 
system.  The Memory is modeled as a Quantity Resource that 
contains a certain number of units that can be allocated to a 
process. 
 



 
Fig. 20: The Memory Manager model. 

The Allocator unit attempts to assign memory to incoming 
processes based on priority and available memory.   Processes 
that get their memory are sent to the Ready Queue and 
processes that don’t are sent to the Priority Queue.  The 
Deallocator takes in a process that has been completed and 
frees the memory associated with it.  The Memory Tracker 
keeps track of how much memory is currently available. 

 
4. SIMULATION RESULTS 

 
Fig. 21 shows the values for the data structure fields: 

process ID number, priority, CPU time required, Memory 
needed, start time, and end time.  Processes are numbered in 
the order they are created.  The CPU time required and 
Memory needed are randomly generated.  As the processes go 
through the RTOS, they are re-ordered by priority and the 
amount of memory needed.  In MLDesigner, one is the lowest 
priority.   
 

 
Fig. 21: The display for created processes. 

 

 
Fig. 22: The display for completed processes. 

 
Fig. 22 shows the resulting output of the RTOS.  The first 

process, having a clear path through the system, is the first one 
completed.  The rest of the processes are finished first in order 
of priority, then by when the system has enough free memory 
to run them. 

 

 
Fig. 23: The display for the Memory Manager module. 

 
As processes are completed, their memory is freed and 

added back to the system pool as shown in Fig. 23.  If the 
system has enough memory to run the next process in the 
queue as shown in Fig. 24, it runs it; otherwise it waits as 
shown in Fig. 25. These results agree with the initial UML 
design of the RTOS. 
 



 
Fig. 24: The display for Ready Queue. 

 

 
Fig. 25: The display for Priority Queue. 

 
5. CONCLUSION 

 
There are many advantages of using the proposed 

methodology. It gives customers feedback of their 
requirements with visual UML diagrams, performs 
concurrency analysis, and simulates the system model with 
inputs. We show that we can clearly understand the 
customer’s requirements by mapping it to an activity diagram 
and other UML diagrams, which the customer can verify. We 
can check our design for concurrency failures such as 
deadlock, safety, and livelock violation. We can simulate our 
model in MLDesigner, measure performance, and select 
components based on performance.  Flexibility is another key 
advantage of this methodology and it can be used at different 
stages of the system development.  We proposed that the 
components must be developed in an object-oriented manner. 
This will enable us to develop reusable and scalable 
components. For example, we can scale our RTOS model for 
different numbers of processors.  The proposed methodology 
has the potential to enhance system design productivity as it 
helps in reducing design iterations from the specification and 
requirements phase to the design and development phase. 
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