
Concurrency Compliant Embedded System Modeling Methodology

Sifat Islam 1, Ravi Shankar 1, Ankur Agarwal 1, Andrew Katan 1, Cyril-Daniel Iskander 2
1Dept. of Computer Science and Engineering, Florida Atlantic University, Boca Raton, FL, 33431

2Hi-Tek Multisystems, Québec, QC, Canada

Abstract - To meet time-to-market demands, it is crucial that
improvement be made to the system design efficiency. By utilizing a
reusable design methodology, it is possible to meet project
management requirements. Component integrations may often fail
due to concurrency concerns. These concurrency problems mainly
occur when components access share resources simultaneously and
communicate with each other. If these problems are not addressed
then a system could lead to sporadic and disastrous failures. In this
paper, we propose a methodology for developing concurrency
compliant components from a requirements document. We have
applied this methodology to develop process management and
memory management aspects of a Real Time Operating System
(RTOS).

Keywords - Embedded System, Modeling, Methodology,
Concurrency, Verification.

1. INTRODUCTION

During the previous decade one could enhance the system
performance by simply increasing the clock speeds.
International Technology Roadmap of Semiconductors (ITRS)
predicts that the saturation point for these clock speeds is
nearing [1]. Thus, we need to find other innovative ways of
further enhancing performance. One way that could help in
this direction is by exploiting concurrency [2]. The concept of
concurrency is essential to multiprocessing and distributed
system environments and, at the same time, allows us to see a
set of interacting objects as a collection of concurrent
processes whose behavior can be observed by means of all
their possible interactions. Concurrency may also help in
reducing the overall system power consumption. Software
developers have realized the need for concurrency and have
started using multithreaded programming models for
embedded system designs. Multithreaded Java and pthreads
are two examples for incorporating concurrency [3]. However,
in most cases concurrent processing has been overshadowed
by a failure to achieve synchronization. Unified system design
frameworks, such as Ptolemy, use Java as a backbone to
address concurrency issues [4]. But the main issue is to be
able to analyze whether after following all the steps for
designing a concurrent system, the new system design still has
any concurrency concerns. There are various models of
computation (MOC) which can achieve concurrency [5].
Some of these MOCs include communicating sequential
processes (CSP) [6], pi-calculus [7], lambda calculus [8] and
finite state machines (FSM) [9]. CSP, pi-calculus and lambda-
calculus offer an effective mechanism of specification and
verification [10]. Pi-calculus is a well-defined process algebra
that can be used to describe and analyze process systems. It
allows mobility of communication channels, includes an

operational semantics, and can be extended to a higher-order
calculus, where not only channels but whole processes can be
transferred [11]. However, they are based on mathematical
models; they are not only hard to understand for a
software/hardware designer but also hard to apply practically.

To meet increasing user demands for more reliable,
scalable, and efficient real-time and embedded systems, the
computer industry has progressed towards utilizing
development, verification, and debugging tools. These tools
are needed to automate the challenging manual process, for
instance fulfilling non-functional requirements, integrating
components, discovering bugs, optimizing performance, and
checking that code represents design models and
requirements. The objective is to discover bugs earlier in
design/development phases, and knowing limitations of the
tools and the methods being utilized.

Currently there are many modeling tools that are available
and by integrating specific tools, it is possible to meet the user
requirements. Finite State Processes (FSP) and Labeled
Transition System Analyzer (LTSA) provide a framework for
modeling concurrency and analyzing it exhaustively [12]. FSP
is a language based on the CSP. But unlike CSP a system
designer will not have to analyze the system specification in
the form of a mathematical model in order to expose
concurrency issues in the system. We can develop a simplified
concurrency model in FSP and analyze the concurrency issues
with LTSA graphically. LTSA also provides a capability of
exhaustive analysis to uncover synchronization issues such as
deadlocks and livelocks.

LTSA-MSC is a tool that is an addition to LTSA (Labeled
Transition System Analyzer) that includes all the MSC
(Message Sequence Chart) related features. The tool depends
on the model-checking services, FSP code editor and the
common interface arrangement that LTSA already offers. This
MSC plug-in, in addition, provides a command line synthesis
tool that takes as an input a text file holding an MSC
specification and outputs a FSP specification that can be
utilized in the stand-alone version of LTSA. The hMSC (high
Message Sequence Chart) editor allows making, connecting
and reordering bMSC (basic Message Sequence Chart) nodes.
At any time, the FSP code can be generated for the three main
behavior models (architecture, trace and constraint models)
with the property declarations required for verifying
consistency and detecting implied scenarios. The designer can
modify the FSP code for the architecture model.

2. BACKGROUND

2.1. Concurrency in an Operating System

An operating system (OS) allocates resources such as CPU
and memory to a process. A process is characterized by the
state of the machine registers, data and its code. The process’s
data are prepared as stack of global variables and local
variables. Usually a process is assigned by an OS its own
address space. Other processes can access shared data by a
unique method [12].

In order for an application program to run on an OS similar
to Unix, it requires the following steps: allocate memory for
the process, load partial or complete code of the process into
memory, execute the code by loading the location of the first
instruction into the program counter register, and the location
of its stack into the stack pointer register. The OS keeps a
process descriptor, which is its own data structure that records
specifics, like scheduling priority, allocated memory and the
values of machine registers while the process is not being
executed [12].

If a process has a single thread of control it does not have
any internal concurrency. On the other hand, a process might
have several lightweight processes or threads. If so, internal
concurrency becomes an issue. With the arrival of multi-core
architectures, software decomposition to better utilize the
processing power will spawn off many concurrent processes.
If they are not managed properly, concurrency failures will
result.

2.2. Abstract Model of an RTOS

Hessel’s RTOS model implements two other types of
services: OS Management and Task Management [13].

OS Management services support initialization of the
RTOS. The signal_init initializes the pertinent RTOS data
structure and begins the multitasking scheduling. The
signal_reset reinitializes the RTOS for verification reasons.
For the preemption and resume tasks to occur during the run
time, they present two primitives: suspend and resume. These
primitives get the task ID as parameters [13].

Task Management services support the interface between
the kernel and the system application. One of its functions is
to give the user a simple way to express an application as a
group of tasks. These researchers modeled the task in such a
way that it contains all the essential information to run. They
implemented the entire task as a PosixThread, so that
preemption and resume by the scheduler can take place. At
the system level, the main focus was not specific task
functionality; instead the focus is the time it takes to compute
and communicate tasks. From this angle, the first duty of the
RTOS is to decide the next process to run, e.g. to choose the
sequence to run tasks. Task management, carried out by the
scheduler, is the main job in the RTOS model [13].

The Scheduler model regards each task as a single thread.
If a task is suspended it waits for a resume command from the
scheduler; otherwise, a task can run when it receives a run
command from the scheduler. The task will get this command
if it acquired the necessary data and the scheduler picks the
task as the next one to run. When the task has completed its

processing in the present cycle, it signals the scheduler and
moves to the idle state. The task also moves to the idle state if
it needs data that is unavailable. If non-periodic task is done
processing, it signals the ending to the scheduler. In this
situation, the scheduler terminates the task. If the task does
move to the idle or ready states, the scheduler picks a task to
run from the ready tasks according to scheduler algorithm. On
the other hand, if a ready list is empty, the scheduler simply
waits for a ready task [13].

Hessel’s RTOS synchronization model offers services to
coordinate the concurrent and the cooperative tasks, providing
methods to deal with the inter-processor and the intra-
processor synchronization issues. This model proposes two
primitives: wait and notify. Invoking the wait method makes
the current task to wait, pending on another task invokes the
notify method, or a set amount of time has passed. When this
takes place, the task moves to the idle state, entering the
waiting list and the task can not be scheduled. The notify
method awakens a task that is waiting for data
synchronization.

3. METHODOLOGY

We propose a modeling methodology for designing

embedded systems. In this methodology, we start from a
“customer’s” requirement document that is then mapped to an
activity diagram, a swimlane diagram, class diagrams, and
use-case diagrams. To evolve a concurrency compliant design,
we used the Message Sequence Chart plug-in for the Label
Transition State Analyzer (LTSA). Later, we use MLDesigner
to model and simulate our system [14].

Fig. 1: Overview of our modeling methodology.

Our modeling methodology shown in Fig. 1 has three steps.

In the first step, we used UML (Unified Modeling Language)
diagrams in developing our design for an RTOS. We
researched into the current RTOS and its characteristics.
These backgrounds help us think of an RTOS as a service
provider for arriving processes. Basically, all the RTOS
activities that occur while a process is being serviced were
depicted in the UML activity diagram. Next, the relationship
between the activities and the components of the RTOS were
shown using a swimlane diagram. We further considered the
relationship of a component of an RTOS with other
components of the RTOS that it needed to carry out its
functionalities. We displayed this information using UML

class diagrams. Each of the operations of a class in a class
diagram is a scenario for a use case diagram in which a
component participates with the other components as actors.

In the second step of our methodology, we performed
concurrency modeling. We checked our RTOS model for
deadlock, safety and liveness properties. Deadlock occurs
when every process is blocked in a system and the system, as
a result, can make no additional progress. A safety property
confirms that no error occurs while a program runs and a
liveness property confirms that a progress eventually occurs.
We used our UML diagrams from step 1 to help us draw
MSCs using LTSA-MSC. The MSC shows the interaction
between components that occur in a scenario. After creating
the MSCs (hMSC and bMSC), these diagrams were
synthesized to FSP code, compiled, and composed in LTSA-
MSC. Next, we checked for deadlock, and if there was any
deadlock we modified our MSC until deadlock was resolved.
After deadlock, we checked for safety property by pressing the
implied scenario detection button, and this shows us if there is
any property violation. Our model did not have any property
violation, so we did not have any implied scenario. If there is
a property violation, then a bMSC will show that implied
scenario. In that case, we will decide if it is a positive (e.g.,
desirable scenario) or negative scenario (e.g., undesirable
scenario). Also note that the MSC was not fully exploited to
identify all concurrency issues across use cases, due to MSC
tool constraints (memory requirements).

In the third and last step, we modeled our components in
MLDesigner (Mission Level Design modeling tool) to show
our methodology. When moving to MLDesigner, the previous
concurrency work was used as a starting point and reference
for the MLDesigner model. The concurrency modeling
defined what components made up the design, and what the
functionality of each component was, allowing us to skip this
when using MLDesigner and go straight to modeling. We
were able to start off knowing exactly what we were
modeling, what each component was to do, and how
everything was connected. For instance, when creating the
Scheduler, the fact that it needed two queues, would schedule
based on priority, and was connected to the Memory Manager
was known. MLDesigner was simply an implementation of
that design. The only real challenge at this point was the
actual translation to MLDesigner, i.e. moving the functionality
from UML to MLDesigner graphical design tool.

We decided to base our model on the CPU demo, since it
already incorporated many of the functionalities that we
needed such as the creation and consumption of a process. To
this we added the extra parameters we needed. Because of
this and because of the way our RTOS works, we chose to use
the DE (Discrete Event) domain in MLDesigner. This models
the RTOS as a system of discrete, time-stamped events. This
was necessary since time is a big part of the RTOS. One of
the helpful aspects about using MLDesigner was that we were
able to use a number of pre-built components in our model, to
directly modify our Process data structure. This shortened our
development time and made it easier to get our model up and
running quickly [15].

3.1. Requirements

We developed our activity diagram as depicted in Fig. 2
from the point of view of a process. When a process arrives, it
sends a request for memory and if the memory is unavailable,
it waits in the priority queue. If the memory is available and
the processor is unavailable, it waits in the ready queue for the
processor to be available [15].

While the process is running on the processor and an
interrupt occurs then interrupt handling takes place. If
cooperation is needed from another process, the synchronizer
coordinates the communication between processes. Once the
process stops running, the resources are returned and the
processor is once again available for other processes. The
Monitor gathers information mainly from two queues, which
are part of processor and Memory Manager. The Monitor
provides information to the OS Manager, which in turn
optimizes data flow. Next, we developed the swimlane
diagram that associates the components’ names with their
activities that were provided in the activity diagram. After the
swimlane diagram, we move on to the class diagram that
depicts the relationship of a component of the RTOS with
other components to carry out certain functionalities.

Scheduler

Process_list:int
Queue_list:int

Schedules():void
Assigns():void
Manages():void
Runs_on_Master():void

Ready_Queue

_manages

1

Priority_Queue

manages

1

Salve_CPU

assign_schedule

1

Process

schedules

1

OS_Manager

optimize_by

1

Master_CPU

runs_on1

Fig. 2: The class diagram for the scheduler.

For example, Fig. 2 shows a Scheduler which runs on the
Master CPU, schedules processes, assigns scheduling policies
to the Slave CPU and manages two queues. The OS Manager
interacts with the Scheduler to optimize the Scheduler’s
activities. The Scheduler component has two attributes, the
process list and the queue list. It also has four operations:
schedules, assigns, manages, and run on master, to perform its
duties. Once we are done with refining the class diagram, we
create use cases.

Scheduler

Schedules

Assigns

Manages

Runs_On_Master_CP
U

Master_CPU

Process

Slave_CPU

Fig. 3: The use case diagram for the scheduler.

In the case of the Scheduler as shown in Fig. 3, components

that interact with the Scheduler components are the actors that
interact to perform scenarios, which are operations of the
scheduler class. The Scheduler components run on Master
CPU, and the Slave CPU gets the process assigned from the
scheduling policy. The Scheduler maintains the scheduling
policy and manages processes. If there is no interaction
between an actor and the scenario, it means interaction is
within the internal components and is not shown in the use
case since it does not involve any actor.

3.2. Concurrency Model for an RTOS

Scheduler: In Fig. 4, the hMSC for the Scheduler connects
three bMSCs. They are the Schedule Process, Ready Process,
and No Ready Process. The Schedule Process in Fig. 5 shows
that the scheduler assigns schedules to Ready Queue and
Priority Queue. Then the Scheduler assigns a process to the
Slave CPU and starts the process.

The Ready Process in Fig. 6 shows that once the process
stops running, the Scheduler checks if there is another process
ready to run. If there is more than one process in the Ready
Queue, the scheduler selects the next process according to the
assigned scheduling policy. The Scheduler assigns the selected
process to run on the Slave CPU. In Fig. 7, it is shown that if
there is no more ready process then the Ready Queue signals
“noReadyProcess” to the Scheduler.

Fig. 4: The hMSC for the scheduler.

Fig. 5: The bMSC for a Scheduler process.

Fig. 6: The bMSC for a Ready process.

Fig. 7: The bMSC for a Process not Ready.

Once MSC specifications were completed, by pressing the

synthesis button we generated the FSP code. The FSP code
has a corresponding state machine (LTS) description. Fig. 8
illustrates the LTS (Labeled Transition System) state machine
description for the interactions between Scheduler and Ready
Queue.

Fig. 8: Ready Queue LTS

Fig. 9: LTSA analyzer for Scheduler

We can instruct the LTSA analyzer tool to find deadlock

states and to produce a sample trace of how these states that
can engage in no further actions can be reached from the start
state. By performing a breadth-first search of the LTS graph,
the LTSA tool guarantees that the sample trace is the shortest
trace to the deadlock state. Fig. 9 shows the output produced
by LTSA analyzer for the Scheduler model.

Memory Manager: In Fig. 10, the hMSC for the Memory
Manager connects bMSCs called Memory Allocation,
Memory Unavailable, and Deallocates. In Fig. 11, when a
process arrives, it requests memory from the Memory
Manager; if memory is available, the Memory Manager
assigns the memory address to the process.

Fig. 10: The hMSC for the Memory Manager.

Fig 11: The bMSC for the available memory.

In Fig. 12, if the memory is unavailable then the Memory

Manager signals “outOfMemory” to the Process. In Fig. 13,
once the process is done using the memory, the Memory
Manager frees the memory.

Fig. 12: The bMSC for the unavailable memory.

Fig. 13. The bMSC to deallocate memory.

Fig. 14 illustrates the LTS state machine description for the

interactions between Memory Manager and Memory. Fig. 15
shows the output when the Memory Manager model is
checked using the analyzer tool LTSA and find that it reports
that there is no deadlock.

Fig. 14: Memory LTSA.

Fig 15: LTSA analyzer for Memory Manager.

3.3. MLDesigner Modeling

MLDesigner models can be used to measure different

performance and quality of service characteristics, such as
system performance, throughput, and delay. The RTOS will
be modeled in MLDesigner in the Discrete Event domain and
will use a consumer/producer model. We currently have four
components modeled: the Process, the Slave CPU, the
Scheduler, and the Memory Manager as shown in Fig. 16.

Fig. 16: The RTOS system.

Consumer/Producer: The design for the RTOS in
MLDesigner is based upon the “CPU Demo” example
included in the software [14]. This demo models the
production and consumption of packets by a single virtual
CPU. The RTOS model uses a modified version of the CPU
Demo’s packet creation to model software processes that
“run” in the RTOS.

Fig. 17: The Process model.

Fig. 17 shows that processes are modeled as data structures
that contain relevant information about the process, such as
memory requirement and the amount of CPU time required.
The Slave CPU component of the RTOS incorporates
elements of the CPU element from this demo model. Fig. 18
shows that the Slave CPU is modeled in a basic way as a
resource that is held by a process for a period of time and then
freed.

Fig. 18: The Slave CPU model.

Scheduler: The Scheduler shown in Fig. 19 consists of a
Priority Queue, its Controller, a Ready Queue, and a CPU
“Manager”. The Priority Queue contains processes that are
waiting for memory and sorts them based on priority. Its
Controller receives memory information from the Memory
Manager, and releases the next item in the queue when enough
memory is available. Items in the Ready Queue are also
sorted based on priority.

The CPU “Manager” also functions as a manager for the
Ready Queue. It keeps track of which CPUs are busy or
available, releases the next item in the Ready Queue when a
CPU is available and routes it to the appropriate CPU.

Fig. 19: The Scheduler model.

Memory Manager: The Memory Manager module depicted in
Fig. 20 allocates and keeps track of the memory used by the
system. The Memory is modeled as a Quantity Resource that
contains a certain number of units that can be allocated to a
process.

Fig. 20: The Memory Manager model.

The Allocator unit attempts to assign memory to incoming
processes based on priority and available memory. Processes
that get their memory are sent to the Ready Queue and
processes that don’t are sent to the Priority Queue. The
Deallocator takes in a process that has been completed and
frees the memory associated with it. The Memory Tracker
keeps track of how much memory is currently available.

4. SIMULATION RESULTS

Fig. 21 shows the values for the data structure fields:

process ID number, priority, CPU time required, Memory
needed, start time, and end time. Processes are numbered in
the order they are created. The CPU time required and
Memory needed are randomly generated. As the processes go
through the RTOS, they are re-ordered by priority and the
amount of memory needed. In MLDesigner, one is the lowest
priority.

Fig. 21: The display for created processes.

Fig. 22: The display for completed processes.

Fig. 22 shows the resulting output of the RTOS. The first

process, having a clear path through the system, is the first one
completed. The rest of the processes are finished first in order
of priority, then by when the system has enough free memory
to run them.

Fig. 23: The display for the Memory Manager module.

As processes are completed, their memory is freed and

added back to the system pool as shown in Fig. 23. If the
system has enough memory to run the next process in the
queue as shown in Fig. 24, it runs it; otherwise it waits as
shown in Fig. 25. These results agree with the initial UML
design of the RTOS.

Fig. 24: The display for Ready Queue.

Fig. 25: The display for Priority Queue.

5. CONCLUSION

There are many advantages of using the proposed

methodology. It gives customers feedback of their
requirements with visual UML diagrams, performs
concurrency analysis, and simulates the system model with
inputs. We show that we can clearly understand the
customer’s requirements by mapping it to an activity diagram
and other UML diagrams, which the customer can verify. We
can check our design for concurrency failures such as
deadlock, safety, and livelock violation. We can simulate our
model in MLDesigner, measure performance, and select
components based on performance. Flexibility is another key
advantage of this methodology and it can be used at different
stages of the system development. We proposed that the
components must be developed in an object-oriented manner.
This will enable us to develop reusable and scalable
components. For example, we can scale our RTOS model for
different numbers of processors. The proposed methodology
has the potential to enhance system design productivity as it
helps in reducing design iterations from the specification and
requirements phase to the design and development phase.

REFERENCES

[1] Semiconductor Industry Association, The International Technology

Roadmap for Semiconductors (ITRS), 2001.
http://public.itrs.net/Files/2001ITRS/Home.htm

[2] H. Sutter, “The free lunch is over: A fundamental turn toward
concurrency in software”, Dr. Dobb’s Journal, 30(3), 2005.

[3] D. R. Butenhof, Programming with POSIX Threads, Addition-
Wesley, 1997.

[4] M. Guler, S. Clements, N. Kejriwal, L. Wills, B. Heck, and B. G.
Vachtsevanos, “Rapid prototyping of transition management code for
reconfigurable control systems”, 13th IEEE International Workshop
on Rapid System Prototyping, 2002, pp. 76 – 83.

[5] J. Burch, R. Passerone, and A.L. Sangiovanni-Vincentelli,
Overcoming Heterophobia: modelling concurrency in heterogeneous
systems”, IEEE International Conference on Application of
Concurrency to System Design, 2001, pp. 13 – 32.

[6] G. H. Hilderink, “Graphical modeling language for specifying
concurrency based on CSP”, IEEE Proceedings on Software
Engineering, 150(2), 2003, pp. 108 – 120.

[7] S. Chrobot, “Modeling communication in distributed systems”, IEEE
International Proceeding in Parallel Computing in Electrical
Engineering, 2002, pp. 55 – 60.

[8] T. Murphy, K. Crary, R. Harper, and F. Pfenning, “A symmetric
modal lambda calculus for distributed computing”, 19th Annual IEEE
Symposium on Logic in Computer Science, 2004, pp. 286 – 295

[9] A. Girault, B. Lee, and E. A. Lee, “Hierarchical finite state machines
with multiple concurrency models”, IEEE Transactions on Computer
Aided Design of Integrated Circuits and Systems, 18(6), 1999, pp.
742-760.

[10] M. Barrio and P. De La Fuente, “A formal model of concurrency for
distributed object-oriented systems”, IEEE International Computer
Science Conference on Software Engineering, 1997, pp. 466-474.

[11] D. Sangiorgi., Expressing Mobility in Process Algebras: First-Order
and Higher-Order Paradigms, PhD Dissertation, Computer Science
Dept., University of Edinburgh, May 1993.

[12] J. Magee and J. Kramer, Concurrency - State Models and Java
Programming, 2nd edition, Wiley, 2006.

[13] F. Hessel et al., “Abstract RTOS modeling for embedded systems”,
Proceedings of the 15th IEEE International Workshop on Rapid
System Prototyping, 2004.

[14] http://www.mldesigner.com/application_notes.html
[15] S. Islam, A Modeling Methodology for an RTOS, M.S. Thesis, Florida

Atlantic University, May 2007.

