

System-Level Modeling of a NoC-Based H.264 Decoder

Ankur Agarwal 1, Cyril-Daniel Iskander 2, Hari Kalva 1, Ravi Shankar 1
ankur@cse.fau.edu, cyril_iskander@hotmail.com, hari@cse.fau.edu, ravi@cse.fau.edu

1Dept of Computer Science and Engineering, Florida Atlantic University, Boca Raton, FL, 33431
2Hi-Tek Multisystems, Québec, QC, Canada

Abstract - Networks-on-chip (NoC) are expected to play a

key role in future embedded systems. A NoC-based system has
the potential to support concurrent processing, in both software
and hardware. This can however lead to concurrency issues. We
present a multiprocessor system modeling and performance
evaluation approach that addresses concurrency. We illustrate
our methodology by mapping a H.264 decoder onto a 4×3 mesh-
based NoC architecture. We show latency, area, and power
consumption results for this NoC architecture abstracted from its
FPGA implementation.

Keywords - network-on-chip, NoC, MLDesigner, H.264,

concurrency.

I. NOC PLATFORM FOR EMBEDDED SYSTEMS
 Network-on-chip (NoC) based systems have the potential
to address bus-based system concerns, and improve design
productivity by supporting modularity and reuse of complex
cores, thus enabling a higher level of abstraction in the
architectural modeling of future systems [1]-[4]. The NoC
architecture implies a shift in concern from computation and
sequential algorithms to the modeling of concurrency,
synchronization and communication [5]. In a multiprocessing
environment, various processes execute simultaneously. At a
given time, every resource may be either producing or
consuming data packets. Therefore, several inter-processes
communications take place in such a model, and if not
modeled properly this may lead to system failure. In this
paper, we propose a methodology for modeling a concurrent
system architecture, and illustrate it by mapping a Nokia
H.264 decoder onto six different cores. The NoC is designed
and modeled using the MLDesigner system-level
environment, which supports different models of
computations, and which allows components to be abstracted
as classes.

II. NOC CONCURRENCY MODELING
 Designers exploit design reuse to enhance system design
productivity. Integration of pre-designed reusable blocks may
fail if these blocks execute in parallel, share resources, and/or
interact with each other. Such concurrency issues, if not
addressed, may be detrimental to the normal functioning of the
system. Multiprocessor architectures, recently introduced to

extend the applicability of the Moore’s law, depend upon
concurrency and synchronization in both software and
hardware to achieve that goal. Concurrency issues, if ignored,
may also lead the system into a deadlock or a livelock state.
Traditional system design integration and verification
approaches will not be cost-effective in exposing concurrency
failures as these are intermittent: such failures can
significantly increase time-to-market and field failures. To
overcome such failures, one would have to develop abstract
concurrency models and do exhaustive analysis on these
models to test for concurrency problems.
 Fig. 1 shows the concurrency modeling flow chart used in
developing our NoC. A concurrency model is developed with
a high level platform and data independent specifications.
Processes are identified from these specifications, which are
later modeled as components, once concurrency concerns are
addressed. The concurrent model is developed using Finite
State Processes (FSP) and is analyzed for concurrency
concerns with LTSA [5], [6]. This concurrency model is then
ported to the architect’s design phase, for analyzing system
performance and for estimating resources needed to map an
application onto a system. More details on our concurrency
modeling approach can be found in [5].

Fig. 1: Concurrency modeling flow chart.

III. SYSTEM-LEVEL MODELING OF NOC
 MLDesigner is a system-level design and modeling
environment. It allows one to model a system at an abstract
level. It supports modeling in different domains such as the
Discrete Event (DE), Synchronous Data Flow (SDF), Finite

State Machine (FSM), Dynamic Data Flow (DDF), and
Synchronous Reactive (SR) domains, among others. Multiple
domains can further be combined to represent a system model.
Hence, a system model can be represented with any level of
details in any part of it. One can do performance analysis on a
developed system model. As this performance analysis is done
at an abstract level, it is therefore optimized in running the
simulation faster as compared to other modeling
environments, which are C, C++ or SystemC-based.
 Such a model at the design phase will allow one to make
key decisions, such as the number of processors, HW/SW
partitioning, the estimated performance values for new
components, and the use of existing components in software
or hardware. Such design decisions have the potential to
significantly enhance the productivity of system design. One
can further abstract the performance parameters for a given
application (e.g. H.264 decoding) on a particular architecture
and capture the resource requirements in terms of processor
speed, cache size, protocol requirements, power consumption,
latency, and silicon area. Fig. 2 shows this system modeling
flow.

Fig. 2: System modeling flow.

 We used MLDesigner to model all the key NoC building
blocks, also denoted as classes. These classes were identified
from a high level system specification. They are: Producer
(P), InputBuffer (IB), Scheduler (S), Router (R), OutputBuffer
(OB) and Consumer (C). Fig. 3 shows the high-level
interaction among these classes in a 3×3 mesh topology [7].
Each node is made up of R, S, and multiple OB and IB
instantiations. In the following sections, we discuss the
specific implementation of each of the NoC classes.

N
S

B
B

B B

B
B

B B
P/C

N
S

B

B

B B

B

B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B

B

B B

B

B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B

B

B B

B

B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
I

N
I

N
I

N
I

N
I

N
I

N
I

N
I

N
I

N
S

B
B

B B

B
B

B B
P/C

N
S

B

B

B B

B

B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B

B

B B

B

B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B

B

B B

B

B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

R
S

IB
OB

OB IB

OB
IB

IB OB
P/C

R
S

IB

OB

OB IB

OB

IB

IB OB
P/C

R
S

IB
OB

OB IB

OB
IB

IB OB
P/C

N
S

B
B

B B

B
B

B B
P/C

R
S

IB
OB

OB IB

OB
IB

IB OB
P/C

R
S

IB

OB

OB IB

OB

IB

IB OB
P/C

R
S

IB
OB

OB IB

OB
IB

IB OB
P/C

N
S

B
B

B B

B
B

B B
P/C

R
S

IB
OB

OB IB

OB
IB

IB OB
P/C

R
S

IB

OB

OB IB

OB

IB

IB OB
P/C

R
S

IB
OB

OB IB

OB
IB

IB OB
P/C

N
I

N
I

N
I

N
I

N
I

N
I

N
I

N
I

N
I

N
S

B
B

B B

B
B

B B
P/C

N
S

B

B

B B

B

B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B

B

B B

B

B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B

B

B B

B

B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B

B

B B

B

B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B

B

B B

B

B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B

B

B B

B

B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
I

N
I

N
I

N
I

N
I

N
I

N
I

N
I

N
I

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B

B

B B

B

B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B

B

B B

B

B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B

B

B B

B

B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

R
S

IB
OB

OB IB

OB
IB

IB OB
P/C

R
S

IB

OB

OB IB

OB

IB

IB OB
P/C

R
S

IB
OB

OB IB

OB
IB

IB OB
P/C

N
S

B
B

B B

B
B

B B
P/C

R
S

IB
OB

OB IB

OB
IB

IB OB
P/C

R
S

IB

OB

OB IB

OB

IB

IB OB
P/C

R
S

IB
OB

OB IB

OB
IB

IB OB
P/C

N
S

B
B

B B

B
B

B B
P/C

R
S

IB
OB

OB IB

OB
IB

IB OB
P/C

R
S

IB

OB

OB IB

OB

IB

IB OB
P/C

R
S

IB
OB

OB IB

OB
IB

IB OB
P/C

N
I

N
I

N
I

N
I

N
I

N
I

N
I

N
I

N
I

Fig. 3: 3×3 mesh-based NoC architecture.

A. Producer Class

A producer is instantiated from the Producer class. It
comprises a resource and a resource network interface (NI). A
producer generates the required traffic pattern and packetizes
the data into flits. A flit is the smallest unit of communication
supported in the NoC. The Producer class has been
implemented with a SDF model of computation as it is
responsible for continuous data flow.

A producer outputs a flit which is time-stamped at the time
of its generation. The timestamp is used to determine the
latency involved in delivering the flit. The source and
destination address fields of the flit header are updated at this
time. As shown in Fig. 4, the flit header has fields for its
priority, timestamp, X-direction of source address, Y-direction
of source address, X-direction of destination address, and Y-
direction of destination address. The priority of this flit is
governed as per a statistical distribution block. For example, in
the case of a uniform distribution pattern, every third flit will
be a high priority flit. Once the new flit has its timestamp,
source and destination addresses and priority fields updated, it
is then forwarded to the output.

The customizable parameters for the Producer class are: (1)
the distribution pattern of the data; (2) the packet injection
rate, i.e. the amount of data generated as a function of time;
(3) the priorities of the generated data - High, Mid or Low.
Each set of parameters is described below.

We used three statistically generated traffic distribution
patterns – uniform traffic with linear destination, random, and
application-specific patterns.
 The packet injection rate represents the number of flits
per cycle injected into the network for transmission. By
defining it as a customizable parameter, this allows us to test
the NoC model for varying load conditions.

We provided three priority levels for data packets in our
NoC model: High priority, Mid priority and Low priority.
High priority supports control signals such as Read (RD),
Write (WR), Acknowledge (ACK), and interrupts. Therefore,
high priority data is a short packet (single flit packet). Mid
priority supports real-time traffic on the system, while Low

 Component Modeling Flow

 Performance Annotation Flow

Bottom-Up Annotation
Methods

Requirements &
Specification

High Level
Concurrency

Component
Identification

Component Modeling
with MLDesigner

Top-Down Annotation
Methods

priority supports non-real time block transfers of data packets.
We have defined control signals as High priority because the
data must respond immediately to a control signal. Therefore,
a control signal must reach its destination in time to manage
the communication flow of the network. Real-time data must
be delivered in real-time bounds. Therefore, we have assigned
Mid priority to real-time data. The rest of the data on the
network belongs to the Low priority class. The number of
priority levels is a customizable parameter.

Priority
Time
Stamp

Source
Address (X)

Source
Address (Y)

Destination
Address (X)

Destination
Address (Y)Priority

Time
Stamp

Source
Address (X)

Source
Address (Y)

Destination
Address (X)

Destination
Address (Y)

Fig. 4: Flit header.

B. InputBuffer Class

 An input buffer is instantiated from the InputBuffer class.
It contains a buffer, a buffer scheduler, and a virtual channel
allocator. An input buffer stores the incoming flits, generates
the proper handshaking signals to communicate with the
scheduler and forwards the flits to the router. An input buffer
has an input block and an output block. These two blocks are
controlled by a state machine. Thus, we have implemented
InputBuffer in the DE and FSM domains. Two concurrent
FSM’s are responsible for storing the input data at the input
terminals of the input buffer and forwarding the data to a
router at the output terminal of the input buffer. The DE
domain is used for implementing a handshaking protocol. A
data forwarding path has been implemented based on a
“request-grant” signaling approach (other NoC
implementations refer to it as flow control logic). Incoming
flits corresponding to all the priority levels (High, Mid and
Low) are stored in a common buffer. Let buffSize represent all
the available space in an input buffer. buffAvail indicates
whether there is space available in the input buffer. The stored
data flits are forwarded to the router based on their scheduling
criteria. For example, in case of priority-based scheduling,
High priority flits are forwarded before the Mid or Low
priority flits, etc… Table 1 shows the classification of flit
types.

Table 1: Flit priority bit combinations.

Bit combination Flit type
00 No flit
01 High priority flit
10 Mid priority flit
11 Low priority flit

 The input buffer is virtually divided into three different
buffers A, B and C (see Figs. 5 (a) and (b)). We have provided
flexibility in the size of these virtual buffers (the combined
size is a fixed user-defined parameter). The input side (i.e. Fig.
5 (a)) is responsible for checking the available buffer space
and allocates memory space for an incoming flit. The output

side (i.e. Fig. 5 (b)) forwards a flit and releases the allocated
memory.
 We have implemented a handshaking protocol for
forwarding a flit. The availability of data flits in the input
buffer for further transmission is indicated by dataInBuff. If a
grant comes in response to this request (nodeGrant), the flit
stored in the buffer is forwarded to the corresponding Router.
On receipt of nodeGrant, a data packet is forwarded by the
output side of the input buffer through dataOut. Fig. 5 (c)
shows the complete implementation of the input side and the
output side of the InputBuffer class. Three virtual buffers as
shown in Figs. 5 (a) and (b) are represented as memories (M)
in Fig. 5 (c). A flit is not removed from the input buffer until a
confirmation (via confirm) is received from the scheduler
(from the output side of Fig. 5 (c)). If confirm is not received,
the data flit is not removed from the input buffer; however, it
will be queued for later forwarding. We provided three virtual
channels (VC) per buffer. A VC controller inside the input
buffer updates these virtual channels.

The customizable parameters for the InputBuffer class are
the buffer size and the scheduling criteria. We can change the
buffer size to any value. By changing the buffer size, we can
understand its impact on latency, area and therefore the silicon
cost. A buffer forwards data to the next block based on its
scheduling criteria. We provided three scheduling criteria
(also referred to as service levels, SL): first-come-first-serve
(FCFS), priority-based (PB), and priority-based-round-robin
(PBRR). In the FCFS scheduling criterion, all the data packets
are treated in the same way. A data flit is forwarded to the
next block based on its arrival time. The data flit with the
earliest arrival time will be forwarded first. In the PB
scheduling criterion, the input buffer first forwards all data
packets with High priority, then those with Mid priority. It
forwards Low priority data packets only when there are no
High or Mid priority data packets present in the input buffer.
In the PBRR scheduling criterion, the input buffer forwards
data packets with different priorities in a specific rotation
pattern. It first forwards a High priority packet, then a Mid
priority packet, followed by a Low priority packet. This cycle
is repeated throughout the simulation.

(a) (b)

(c)

Fig. 5: MLDesigner implementation of the InputBuffer class: (a) input side;
(b) output side; (c) combined input and output sides.

C. Scheduler Class

A scheduler is instantiated from the Scheduler class. The

data and control parts of a node have been separated (the
Router class handles the data part and the Scheduler class
handles the control signals) to manage concurrency issues and
make the design more scalable and reusable. The actual data
flows from one node to another through a router. The path of
the actual flow of this data is defined by a scheduler. A
scheduler is also responsible for synchronizing the input
buffer with the router and the router with the output buffer
while receiving and transmitting the data further. It schedules
the incoming requests for data transmission to the next node,
by checking for the availability of the output data path and by
arbitrating the requests from various input buffers associated
with it. The Scheduler class has been implemented in the DE
domain. A scheduler is mainly responsible for
synchronization, and thus the DE domain is the ideal model of
computation (MOC) for its implementation. Fig. 6 shows the
MLDesigner implementation of the Scheduler class. The
scheduler is connected to five instances of InputBuffer (one for
each direction in the 2-D mesh network and a fifth buffer for
the local Producer class connected through a NI) and,
similarly, five instances of OutputBuffer on the output side.

A scheduler accepts the requests from an input buffer via
dataInBuff (the input signal on the left side of Fig. 6) and
allocates the data path by asserting nodeGrant (the output
signal on the left side of Fig. 6). The data path allocation is
based on the availability of an output buffer and the route. We
have embedded multiple algorithms in the Scheduler class as
discussed in the previous section. A scheduler will select an
input buffer from multiple input buffers requesting for
transmission of a data packet. The router informs the
scheduler about the physical output path for flit transmission
via outputPort. Availability of the data path is acknowledged
by assertion of confirm. The Scheduler class is implemented in
two different models of computation. The control part of the

scheduler has been implemented with FSM. This FSM
interacts with the DE domain for proper handshaking with the
input buffer and router on the input side and the output buffer
on the output side of the scheduler.
 The customizable parameter for the Scheduler class is the
scheduling criterion. The Scheduler class supports different
scheduling criteria: FCFS, PB, round-robin (RR), and PBRR.
Thus, in a network we can have a combination of scheduling
algorithms.

Fig. 6: MLDesigner implementation of the Scheduler class.

D. Router Class

A router, instantiated from the Router class, determines the
output path and handles the actual data transfer on the
implemented backbone. The router receives a certain number
of data flits per unit time and is constrained by the data
bandwidth for transmitting a fixed number of flits at the
output. Thus, the Router class has been implemented in the
SDF domain. A dimension-order routing protocol was
implemented in the Router class for determining the output
path. We have provided customization in routing algorithms as
discussed earlier. Upon receipt of data, a router extracts the
destination information and determines the physical output
port for transmitting the data. This output port address is sent
to the corresponding scheduler, which determines the
availability of this port. Upon its availability, data flits are
then forwarded to the corresponding output buffer for this
port.

The type of routing algorithm is a parameter for the Router
class. It can be set to: X-direction-first, Y-direction-first, and
XY-random. In the X-direction-first algorithm, the data is
routed to the X-direction first provided there is the possibility
of the data to be routed to the Y-direction as well. The Y-
direction-first algorithm works similarly. In the XY-random
algorithm, if there is a possibility for the data to be routed to
the X-direction as well as the Y-direction, the direction is

chosen in a randomized fashion with the same likelihood for
the two choices.

Fig. 7: MLDesigner implementation of the Router class.

E. OutputBuffer Class

An output buffer, instantiated from the OutputBuffer class,

accepts the incoming flits from the router and forwards these
flits to the input buffer of the next node. It is implemented in
the form of two concurrently executing state machines. The
received flits are stored in the output buffer memory. The
input state machine accepts and stores the data flits while there
is available memory in the output buffer. Upon the request of
the scheduler by reqBuffAvail, the availability of buffer space
in the output buffer is signaled by buffAvail. The output state
machine senses the request for transmitting data from the
output buffer of the next router via outputBuffAvail of that
output buffer and forwards the data flit, if that signal was
asserted.

The customizable parameters for the OutputBuffer class are
the same as those for the InputBuffer class.

Fig. 8: MLDesigner implementation of the OutputBuffer class.

F. Consumer Class

A consumer, instantiated from the Consumer class,
comprises a computing resource and a network interface. A
consumer accepts data flits, strips off the header information,
and forwards the remainder of the data to its internal
computing resources. A consumer consumes data packets.
Thus, as we did for the Producer class, we have implemented
the Consumer class in the SDF domain.

IV. A NOC-BASED H.264 DECODER
The NoC architecture is effectively exploited when all the

available cores on a multi-core architecture are kept busy by
partitioning and mapping the multimedia application. At the
application level, audio and video decoders can run on
separate cores. However, to use all available cores, a
multimedia application has to be partitioned into components
and sub-components that are distributed among the available
cores. The H.264 video compression algorithm has received
significant interest from the industry and is expected to be
used in a large number of mobile and embedded devices [8].
We developed a component model for a H.264 decoder that
partitions the decoder based on functional components. In this
approach, each component of the decoder is determined based
on the well-defined subset of H.264 functions. The H.264
decoder is divided into the following key components: 1)
entropy decoding; 2) inverse transform and quantization; 3)
intra prediction; 4) inter prediction; and 5) deblocking. In
addition to these processing components, the memory required
can be treated as a separate component. Fig. 9 shows the
components of a H.264 decoder.

Fig. 9: Components of a H.264 decoder.

The memory components can be separated into the
current frame memory (before the deblocking operation) and
the decoded frame memory that is used for display and motion
estimation. The access patterns to this memory and hence the
traffic on the NoC core network varies depending on the
macroblock (MB) coding modes.

The processing power required for each of these
components varies and is also content-dependent. For
example, when coded content contains more intra MBs, the
intra component takes up the most resources. Keeping the
NoC cores busy and balanced thus requires an understanding
of the resources required by each component and the
associated content dependencies. A resource estimation model
for H.264 video decoding was presented in [9]. Based on the
resource requirements for individual components, one or more
instances of the decoder components are run on the NoC
cores. While multiple inter prediction components may be
necessary, a single intra prediction component is likely to be

 H.264 compressed
video

Entropy
Decoder

Inverse Quantization
and Transform

Intra
Prediction

Inter
Prediction

Deblocking

Frame
Memory

Decoded
Pic Buffer

Display

H.264 compressed
video

Entropy
Decoder

Inverse Quantization
and Transform

Intra
Prediction

Inter
Prediction

Deblocking

Frame
Memory

Decoded
Pic Buffer

Display

sufficient for most applications. The work load distribution
across the cores is managed by a scheduler, which is also
responsible for synchronizing the flows among the cores.

Hereafter we briefly review our resource estimation
methodology [9]. Fig. 10 shows the algorithm for extracting
the communication dependency graphs using the VTune
software tool. To extract the inter-component communication
graphs, we first execute embedded C++ code for a Nokia
H.264 decoder in the VTune environment. While executing
this code, we must make sure that we are compiling the code
for extracting performance parameters and call-graphs. As a
result VTune generates a list of all the functions and the
communication dependencies among these functions. As a
next step, we group these functions into components. Thus, we
get a profile of the total number of communications of a
component and internal communications in that component.
For executing this application on a NoC environment we do
not need the internal communication details as this traffic does
not get routed over the network. Therefore, we abstract out
these details. As a next step we check the number of reads,
writes, clock ticks, 1st level cache hits and cache misses, 2nd
level cache hits and cache misses, and the bus activity. We
further analyze the functional dependencies from the number
of reads and writes and construct the final call-graphs for
inter-component communications.

Fig. 10: Algorithm for extracting call-graphs using Intel VTune [9].

V. RESULTS
We implemented the NoC components on an FPGA to

extract the total NoC area as well as the area information of
each component. A system is defined in terms of its
components. Using Impulse C, individual components of a
system can be described as C functions. These functions are
executed independently as processes. These processes can be

declared as a hardware or software process. If the component
is defined as a hardware process, then it gets implemented on
the FPGA hardware. If defined as a software process, then the
component is implemented in a soft-core processor. Impulse C
code for all the processes in a system can be developed with
any C++ compiler. A configuration function partitions the
processes into running as either software or hardware. The
configuration function also defines the way the process
interfaces communicate, linking them all together as a whole
system. The functionality of the prototype can be simulated
and debugged, if needed, on a workstation before even being
ported to the FPGA.

We designed the InputBuffer class as a smart buffer with a
built-in scheduler, which forwards the data as per certain
scheduling criteria. A buffer can be designed as being 32-bit
or 64-bit wide. In the 64-bit buffer, the chip area will increase
but the number of packets to be transmitted will be reduced to
about half as compared to the 32-bit buffer. Therefore, it is
likely that the latency of a system will be reduced by
transmitting a larger packet. But it will require support for
more parallel transmission lines (bus) in case of a parallel data
transmission. Table 2 shows the number of gates taken by
different buffer sizes for 32-bit and 64 bit buffers.

Table 2: Gate counts for different buffer sizes and bit widths.

Buffer Size Gate Count for 32-
Bit

Gate Count for 64-
Bit

Size 1 11,427 16,733
Size 2 13,381 20,135
Size 3 14,510 22,207
Size 4 14,920 23,292
Size 5 15,526 24,594
Size 10 16,108 24,940

Note that the number of gates for a 64-bit buffer is not

twice that of a 32-bit buffer. This is because every buffer has a
scheduler for scheduling the data packets from the buffer. This
scheduler occupies a fixed gate count that does not change
with the buffer bit width.

Fig. 11 shows the number of gates needed to implement
the NoC Router class, and the NoC Scheduler class with
different scheduling algorithms: FCFS, RR, PB, and PBRR.

Fig. 11: Number of gates for NoC Router and Scheduler classes.

Using the resource estimation methodology of Section IV

we abstracted the inter-component communication (see Fig.
12) for a foreman video bitstream using a H.264 Nokia
decoder. The video had 15 frames per second with a resolution

0

2,000

4,000

6,000

8,000

10,000

12,000

PBRR FCFS RR PB Router

of 176×144 pixels. The compressed bitstream had a bit rate of
15 Kb/sec. This traffic is modeled on a six-core NoC based-
architecture. Arrows in Fig. 12 show the amount of traffic that
flows from one component to another. We modeled this traffic
on MLDesigner to calculate latencies offered by each H.264
component.

Fig. 12: Inter-component communication in the H.264 decoder.

We used a flit size of 64 bytes. Out of these 64 bytes, 8
bytes constitute the flit header used for sending the destination
address, the source address and the priority level. We mapped
the components with the highest intercommunication next to
each other (single hop distance). This reduced the network
latency. Fig. 13 shows the data packet arrival latency results
for the foreman video (15 frames at 15 Kb/sec bitstream).

Arrival Latency for H.264 Foreman Video

0

10

20

30

40

50

60

Intra VLD IDCT Other DeBlock

H.264 Com ponents

L
a

te
n

cy

Fig. 13: Data packet arrival latency for H.264 foreman video.

VI. RELATED WORK

 In [10], the authors used the OPNET network design and
simulation environment to model an application-specific NoC
and analyze its performance, the application being an H.264
HDTV decoder. The actual circuit design was done using
SPICE. In [11], the authors mapped a H.264 decoder onto two
networks-on-chip based on a mesh architecture and a fat-tree
architecture, with the goal to maximize throughput while
minimizing energy consumption, while in [12], they used tree-

based NoC’s; NS-2 was used for simulations. In [13], a
MPEG-4 arbitrary-shaped video decoder is mapped onto a
NoC, in order to demonstrate a hierarchical Quality-of-Service
framework. In [14] the authors used the CASSE system-level
tool to map a MPEG-4 decoder onto a multicore system-on-
chip.

VI. CONCLUSION
We demonstrated a methodology for modeling and mapping

applications onto a NoC architecture. A concurrency model
for the NOC was first developed using FSP, and analyzed
using LTSA. The NoC was then designed using the
MLDesigner system-level modeling environment, where each
component was represented as a class. We then abstracted area
results for a 4×3 mesh-based NoC architecture. We mapped a
Nokia H.264 decoder application onto the NoC and showed
the latency results for a single abstracted bitstream.

REFERENCES

[1] W. J. Dally and B. Towles, “Route packets, not wires: on-chip

interconnection networks”, IEEE International Conference on Design
and Automation, pp. 684-689, June 2001.

[2] L. Benini and G. De Micheli, “Networks on chip: a new SOC
paradigm”, IEEE Computer, vol. 35, no. 1, pp. 70-78, January 2002.

[3] A. Jantsch and H. Tenhunen. Networks on Chip, Kluwer Academic
Publisher, 2003.

[4] G. Desoli and E. Filippi, “An outlook on evolution of mobile terminals:
From monolithic to modular multi-radio, multi-application platforms”,
IEEE Circuits and Systems Magazine, vol. 6, no. 2, 2006, pp. 17-29.

[5] A. Agarwal and R. Shankar, “A concurrency model for NOC design
methodology”, IEEE Conf. on High Performance Computing, MIT,
Sept. 2006.

[6] J. Magee and J. Kramer, Concurrency: State Models and Java
Programs, 2nd edition, Wiley, 2006.

[7] P. Pratim Pande, C. Grecu, M. Jones, A. Ivanov, and R.
Saleh, “Performance evaluation and design trade-offs for network-on-
chip interconnect architectures”, IEEE Transactions on Computers, vol.
54, no. 8, pp. 1025-1040, Aug. 2005.

[8] H. Kalva, “The H.264/AVC video coding standard,” IEEE Multimedia,
vol. 13, no. 4, Oct.-Dec. 2006, pp. 86-90.

[9] H. Kalva, R. Shankar, T. Patel, and C. Cruz, “Resource estimation
methodology for multimedia applications,” Proc. of the 14th Annual
ACM/SPIE MMCN'07, San Jose, CA, Jan. 2007.

[10] J. Xu, W. Wolf, J. Henkel, and S. Chakradhar, “H. 264 HDTV decoder
using application-specific networks-on-chip”, IEEE International Conf.
on Multimedia and Expo, July 2006, pp. 1508-1511.

[11] V.-D. Ngo, H.-N. Nguyen, and H.-W. Choi, “Realizing network on chip
design of H.264 decoder based on throughput aware mapping”, First
International Conf. on Communications and Electronics, Oct. 2006, pp.
337-342.

[12] V.-D. Ngo, H.-W. Choi, Y. Bae, and H. Cho, “The optimized tree-based
network on chip topologies for H.264 decoder design”, The 2006
International Conf. on Computer Engineering and Systems, Nov. 2006,
pp. 343-347.

[13] M. Pastrnak, P. H. N. de With, and J. van Meerbergen, “QoS concept for
scalable MPEG-4 video object decoding on multimedia (NoC) chips”,
IEEE Trans. on Consumer Electronics, vol. 52, no. 4, Nov. 2006, pp.
1418-1426.

[14] L. García, G. M. Callico, D. Barreto, V. Reyes, T. Bautista, and A.
Nunez, “Towards a configurable SoC MPEG-4 advanced simple profile
decoder”, IET Comput. Digit. Tech., vol. 1, no. 5, Sept. 2007, pp. 451-
460.

