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Abstract - Networks-on-chip (NoC) are expected to play a 

key role in future embedded systems. A NoC-based system has 
the potential to support concurrent processing, in both software 
and hardware. This can however lead to concurrency issues. We 
present a multiprocessor system modeling and performance 
evaluation approach that addresses concurrency. We illustrate 
our methodology by mapping a H.264 decoder onto a 4×3 mesh-
based NoC architecture. We show latency, area, and power 
consumption results for this NoC architecture abstracted from its 
FPGA implementation. 

 
Keywords - network-on-chip, NoC, MLDesigner, H.264, 
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I. NOC PLATFORM FOR EMBEDDED SYSTEMS 
 Network-on-chip (NoC) based systems have the potential 
to address bus-based system concerns, and improve design 
productivity by supporting modularity and reuse of complex 
cores, thus enabling a higher level of abstraction in the 
architectural modeling of future systems [1]-[4]. The NoC 
architecture implies a shift in concern from computation and 
sequential algorithms to the modeling of concurrency, 
synchronization and communication [5]. In a multiprocessing 
environment, various processes execute simultaneously. At a 
given time, every resource may be either producing or 
consuming data packets. Therefore, several inter-processes 
communications take place in such a model, and if not 
modeled properly this may lead to system failure. In this 
paper, we propose a methodology for modeling a concurrent 
system architecture, and illustrate it by mapping a Nokia 
H.264 decoder onto six different cores. The NoC is designed 
and modeled using the MLDesigner system-level 
environment, which supports different models of 
computations, and which allows components to be abstracted 
as classes. 

II. NOC CONCURRENCY MODELING 
 Designers exploit design reuse to enhance system design 
productivity. Integration of pre-designed reusable blocks may 
fail if these blocks execute in parallel, share resources, and/or 
interact with each other. Such concurrency issues, if not 
addressed, may be detrimental to the normal functioning of the 
system. Multiprocessor architectures, recently introduced to 

extend the applicability of the Moore’s law, depend upon 
concurrency and synchronization in both software and 
hardware to achieve that goal. Concurrency issues, if ignored, 
may also lead the system into a deadlock or a livelock state. 
Traditional system design integration and verification 
approaches will not be cost-effective in exposing concurrency 
failures as these are intermittent: such failures can 
significantly increase time-to-market and field failures. To 
overcome such failures, one would have to develop abstract 
concurrency models and do exhaustive analysis on these 
models to test for concurrency problems.  
 Fig. 1 shows the concurrency modeling flow chart used in 
developing our NoC. A concurrency model is developed with 
a high level platform and data independent specifications. 
Processes are identified from these specifications, which are 
later modeled as components, once concurrency concerns are 
addressed. The concurrent model is developed using Finite 
State Processes (FSP) and is analyzed for concurrency 
concerns with LTSA [5], [6]. This concurrency model is then 
ported to the architect’s design phase, for analyzing system 
performance and for estimating resources needed to map an 
application onto a system. More details on our concurrency 
modeling approach can be found in [5]. 
 

 
 

Fig. 1: Concurrency modeling flow chart.

 
 
 

 
 

 

III. SYSTEM-LEVEL MODELING OF NOC 
  MLDesigner is a system-level design and modeling 
environment. It allows one to model a system at an abstract 
level. It supports modeling in different domains such as the 
Discrete Event (DE), Synchronous Data Flow (SDF), Finite 



State Machine (FSM), Dynamic Data Flow (DDF), and 
Synchronous Reactive (SR) domains, among others. Multiple 
domains can further be combined to represent a system model. 
Hence, a system model can be represented with any level of 
details in any part of it. One can do performance analysis on a 
developed system model. As this performance analysis is done 
at an abstract level, it is therefore optimized in running the 
simulation faster as compared to other modeling 
environments, which are C, C++ or SystemC-based. 
 Such a model at the design phase will allow one to make 
key decisions, such as the number of processors, HW/SW 
partitioning, the estimated performance values for new 
components, and the use of existing components in software 
or hardware. Such design decisions have the potential to 
significantly enhance the productivity of system design. One 
can further abstract the performance parameters for a given 
application (e.g. H.264 decoding) on a particular architecture 
and capture the resource requirements in terms of processor 
speed, cache size, protocol requirements, power consumption, 
latency, and silicon area. Fig. 2 shows this system modeling 
flow.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: System modeling flow. 
 
 We used MLDesigner to model all the key NoC building 
blocks, also denoted as classes. These classes were identified 
from a high level system specification. They are: Producer 
(P), InputBuffer (IB), Scheduler (S), Router (R), OutputBuffer 
(OB) and Consumer (C). Fig. 3 shows the high-level 
interaction among these classes in a 3×3 mesh topology [7]. 
Each node is made up of R, S, and multiple OB and IB 
instantiations. In the following sections, we discuss the 
specific implementation of each of the NoC classes. 
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Fig. 3: 3×3 mesh-based NoC architecture. 
 
A. Producer Class 
 

A producer is instantiated from the Producer class. It 
comprises a resource and a resource network interface (NI). A 
producer generates the required traffic pattern and packetizes 
the data into flits. A flit is the smallest unit of communication 
supported in the NoC. The Producer class has been 
implemented with a SDF model of computation as it is 
responsible for continuous data flow. 

A producer outputs a flit which is time-stamped at the time 
of its generation. The timestamp is used to determine the 
latency involved in delivering the flit. The source and 
destination address fields of the flit header are updated at this 
time. As shown in Fig. 4, the flit header has fields for its 
priority, timestamp, X-direction of source address, Y-direction 
of source address, X-direction of destination address, and Y-
direction of destination address. The priority of this flit is 
governed as per a statistical distribution block. For example, in 
the case of a uniform distribution pattern, every third flit will 
be a high priority flit. Once the new flit has its timestamp, 
source and destination addresses and priority fields updated, it 
is then forwarded to the output.  

The customizable parameters for the Producer class are: (1) 
the distribution pattern of the data; (2) the packet injection 
rate, i.e. the amount of data generated as a function of time; 
(3) the priorities of the generated data - High, Mid or Low. 
Each set of parameters is described below.  

We used three statistically generated traffic distribution 
patterns – uniform traffic with linear destination, random, and 
application-specific patterns. 
 The packet injection rate represents the number of flits 
per cycle injected into the network for transmission. By 
defining it as a customizable parameter, this allows us to test 
the NoC model for varying load conditions. 

We provided three priority levels for data packets in our 
NoC model: High priority, Mid priority and Low priority. 
High priority supports control signals such as Read (RD), 
Write (WR), Acknowledge (ACK), and interrupts. Therefore, 
high priority data is a short packet (single flit packet). Mid 
priority supports real-time traffic on the system, while Low 
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priority supports non-real time block transfers of data packets. 
We have defined control signals as High priority because the 
data must respond immediately to a control signal. Therefore, 
a control signal must reach its destination in time to manage 
the communication flow of the network. Real-time data must 
be delivered in real-time bounds. Therefore, we have assigned 
Mid priority to real-time data. The rest of the data on the 
network belongs to the Low priority class. The number of 
priority levels is a customizable parameter.  
 

Priority
Time
Stamp

Source
Address (X)

Source
Address (Y)

Destination
Address (X)

Destination
Address (Y)Priority

Time
Stamp

Source
Address (X)

Source
Address (Y)

Destination
Address (X)

Destination
Address (Y)  

Fig. 4: Flit header. 

 
B. InputBuffer Class 
 
 An input buffer is instantiated from the InputBuffer class. 
It contains a buffer, a buffer scheduler, and a virtual channel 
allocator. An input buffer stores the incoming flits, generates 
the proper handshaking signals to communicate with the 
scheduler and forwards the flits to the router. An input buffer 
has an input block and an output block. These two blocks are 
controlled by a state machine. Thus, we have implemented 
InputBuffer in the DE and FSM domains. Two concurrent 
FSM’s are responsible for storing the input data at the input 
terminals of the input buffer and forwarding the data to a 
router at the output terminal of the input buffer. The DE 
domain is used for implementing a handshaking protocol. A 
data forwarding path has been implemented based on a 
“request-grant” signaling approach (other NoC 
implementations refer to it as flow control logic). Incoming 
flits corresponding to all the priority levels (High, Mid and 
Low) are stored in a common buffer. Let buffSize represent all 
the available space in an input buffer. buffAvail indicates 
whether there is space available in the input buffer. The stored 
data flits are forwarded to the router based on their scheduling 
criteria. For example, in case of priority-based scheduling, 
High priority flits are forwarded before the Mid or Low 
priority flits, etc… Table 1 shows the classification of flit 
types. 
 

Table 1: Flit priority bit combinations. 
 

Bit combination Flit type 
00 No flit 
01 High priority flit 
10 Mid priority flit 
11 Low priority flit 

 
 
 The input buffer is virtually divided into three different 
buffers A, B and C (see Figs. 5 (a) and (b)). We have provided 
flexibility in the size of these virtual buffers (the combined 
size is a fixed user-defined parameter). The input side (i.e. Fig. 
5 (a)) is responsible for checking the available buffer space 
and allocates memory space for an incoming flit. The output 

side (i.e. Fig. 5 (b)) forwards a flit and releases the allocated 
memory.  
 We have implemented a handshaking protocol for 
forwarding a flit. The availability of data flits in the input 
buffer for further transmission is indicated by dataInBuff. If a 
grant comes in response to this request (nodeGrant), the flit 
stored in the buffer is forwarded to the corresponding Router. 
On receipt of nodeGrant, a data packet is forwarded by the 
output side of the input buffer through dataOut. Fig. 5 (c) 
shows the complete implementation of the input side and the 
output side of the InputBuffer class. Three virtual buffers as 
shown in Figs. 5 (a) and (b) are represented as memories (M) 
in Fig. 5 (c). A flit is not removed from the input buffer until a 
confirmation (via confirm) is received from the scheduler 
(from the output side of Fig. 5 (c)). If confirm is not received, 
the data flit is not removed from the input buffer; however, it 
will be queued for later forwarding. We provided three virtual 
channels (VC) per buffer. A VC controller inside the input 
buffer updates these virtual channels. 

The customizable parameters for the InputBuffer class are 
the buffer size and the scheduling criteria. We can change the 
buffer size to any value. By changing the buffer size, we can 
understand its impact on latency, area and therefore the silicon 
cost. A buffer forwards data to the next block based on its 
scheduling criteria. We provided three scheduling criteria 
(also referred to as service levels, SL): first-come-first-serve 
(FCFS), priority-based (PB), and priority-based-round-robin 
(PBRR). In the FCFS scheduling criterion, all the data packets 
are treated in the same way. A data flit is forwarded to the 
next block based on its arrival time. The data flit with the 
earliest arrival time will be forwarded first. In the PB 
scheduling criterion, the input buffer first forwards all data 
packets with High priority, then those with Mid priority. It 
forwards Low priority data packets only when there are no 
High or Mid priority data packets present in the input buffer. 
In the PBRR scheduling criterion, the input buffer forwards 
data packets with different priorities in a specific rotation 
pattern. It first forwards a High priority packet, then a Mid 
priority packet, followed by a Low priority packet. This cycle 
is repeated throughout the simulation. 
  

      

(a)            (b)  

    



 
(c) 

Fig. 5: MLDesigner implementation of the InputBuffer class: (a) input side; 
(b) output side; (c) combined input and output sides. 

 
C. Scheduler Class 

 
A scheduler is instantiated from the Scheduler class. The 

data and control parts of a node have been separated (the 
Router class handles the data part and the Scheduler class 
handles the control signals) to manage concurrency issues and 
make the design more scalable and reusable. The actual data 
flows from one node to another through a router. The path of 
the actual flow of this data is defined by a scheduler. A 
scheduler is also responsible for synchronizing the input 
buffer with the router and the router with the output buffer 
while receiving and transmitting the data further. It schedules 
the incoming requests for data transmission to the next node, 
by checking for the availability of the output data path and by 
arbitrating the requests from various input buffers associated 
with it. The Scheduler class has been implemented in the DE 
domain. A scheduler is mainly responsible for 
synchronization, and thus the DE domain is the ideal model of 
computation (MOC) for its implementation. Fig. 6 shows the 
MLDesigner implementation of the Scheduler class. The 
scheduler is connected to five instances of InputBuffer (one for 
each direction in the 2-D mesh network and a fifth buffer for 
the local Producer class connected through a NI) and, 
similarly, five instances of OutputBuffer on the output side. 

A scheduler accepts the requests from an input buffer via 
dataInBuff (the input signal on the left side of Fig. 6) and 
allocates the data path by asserting nodeGrant (the output 
signal on the left side of Fig. 6). The data path allocation is 
based on the availability of an output buffer and the route. We 
have embedded multiple algorithms in the Scheduler class as 
discussed in the previous section. A scheduler will select an 
input buffer from multiple input buffers requesting for 
transmission of a data packet. The router informs the 
scheduler about the physical output path for flit transmission 
via outputPort. Availability of the data path is acknowledged 
by assertion of confirm. The Scheduler class is implemented in 
two different models of computation. The control part of the 

scheduler has been implemented with FSM. This FSM 
interacts with the DE domain for proper handshaking with the 
input buffer and router on the input side and the output buffer 
on the output side of the scheduler. 
 The customizable parameter for the Scheduler class is the 
scheduling criterion. The Scheduler class supports different 
scheduling criteria: FCFS, PB, round-robin (RR), and PBRR. 
Thus, in a network we can have a combination of scheduling 
algorithms.  
 

 
Fig. 6: MLDesigner implementation of the Scheduler class. 

 
D. Router Class 
 

A router, instantiated from the Router class, determines the 
output path and handles the actual data transfer on the 
implemented backbone. The router receives a certain number 
of data flits per unit time and is constrained by the data 
bandwidth for transmitting a fixed number of flits at the 
output. Thus, the Router class has been implemented in the 
SDF domain. A dimension-order routing protocol was 
implemented in the Router class for determining the output 
path. We have provided customization in routing algorithms as 
discussed earlier. Upon receipt of data, a router extracts the 
destination information and determines the physical output 
port for transmitting the data. This output port address is sent 
to the corresponding scheduler, which determines the 
availability of this port. Upon its availability, data flits are 
then forwarded to the corresponding output buffer for this 
port. 

The type of routing algorithm is a parameter for the Router 
class. It can be set to: X-direction-first, Y-direction-first, and 
XY-random. In the X-direction-first algorithm, the data is 
routed to the X-direction first provided there is the possibility 
of the data to be routed to the Y-direction as well. The Y-
direction-first algorithm works similarly. In the XY-random 
algorithm, if there is a possibility for the data to be routed to 
the X-direction as well as the Y-direction, the direction is 



chosen in a randomized fashion with the same likelihood for 
the two choices. 
 

 
Fig. 7: MLDesigner implementation of the Router class. 

 
E. OutputBuffer Class 

 
An output buffer, instantiated from the OutputBuffer class, 

accepts the incoming flits from the router and forwards these 
flits to the input buffer of the next node. It is implemented in 
the form of two concurrently executing state machines. The 
received flits are stored in the output buffer memory. The 
input state machine accepts and stores the data flits while there 
is available memory in the output buffer. Upon the request of 
the scheduler by reqBuffAvail, the availability of buffer space 
in the output buffer is signaled by buffAvail. The output state 
machine senses the request for transmitting data from the 
output buffer of the next router via outputBuffAvail of that 
output buffer and forwards the data flit, if that signal was 
asserted. 

The customizable parameters for the OutputBuffer class are 
the same as those for the InputBuffer class. 
 

 
Fig. 8: MLDesigner implementation of the OutputBuffer class. 

 
F. Consumer Class 
 

A consumer, instantiated from the Consumer class, 
comprises a computing resource and a network interface. A 
consumer accepts data flits, strips off the header information, 
and forwards the remainder of the data to its internal 
computing resources. A consumer consumes data packets. 
Thus, as we did for the Producer class, we have implemented 
the Consumer class in the SDF domain. 

IV. A NOC-BASED H.264 DECODER 
The NoC architecture is effectively exploited when all the 

available cores on a multi-core architecture are kept busy by 
partitioning and mapping the multimedia application. At the 
application level, audio and video decoders can run on 
separate cores. However, to use all available cores, a 
multimedia application has to be partitioned into components 
and sub-components that are distributed among the available 
cores. The H.264 video compression algorithm has received 
significant interest from the industry and is expected to be 
used in a large number of mobile and embedded devices [8]. 
We developed a component model for a H.264 decoder that 
partitions the decoder based on functional components. In this 
approach, each component of the decoder is determined based 
on the well-defined subset of H.264 functions. The H.264 
decoder is divided into the following key components: 1) 
entropy decoding; 2) inverse transform and quantization; 3) 
intra prediction; 4) inter prediction; and 5) deblocking. In 
addition to these processing components, the memory required 
can be treated as a separate component. Fig. 9 shows the 
components of a H.264 decoder. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 9: Components of a H.264 decoder. 
 

The memory components can be separated into the 
current frame memory (before the deblocking operation) and 
the decoded frame memory that is used for display and motion 
estimation.  The access patterns to this memory and hence the 
traffic on the NoC core network varies depending on the 
macroblock (MB) coding modes.  

The processing power required for each of these 
components varies and is also content-dependent. For 
example, when coded content contains more intra MBs, the 
intra component takes up the most resources. Keeping the 
NoC cores busy and balanced thus requires an understanding 
of the resources required by each component and the 
associated content dependencies. A resource estimation model 
for H.264 video decoding was presented in [9].  Based on the 
resource requirements for individual components, one or more 
instances of the decoder components are run on the NoC 
cores. While multiple inter prediction components may be 
necessary, a single intra prediction component is likely to be 
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sufficient for most applications. The work load distribution 
across the cores is managed by a scheduler, which is also 
responsible for synchronizing the flows among the cores. 

Hereafter we briefly review our resource estimation 
methodology [9]. Fig. 10 shows the algorithm for extracting 
the communication dependency graphs using the VTune 
software tool. To extract the inter-component communication 
graphs, we first execute embedded C++ code for a Nokia 
H.264 decoder in the VTune environment. While executing 
this code, we must make sure that we are compiling the code 
for extracting performance parameters and call-graphs. As a 
result VTune generates a list of all the functions and the 
communication dependencies among these functions. As a 
next step, we group these functions into components. Thus, we 
get a profile of the total number of communications of a 
component and internal communications in that component. 
For executing this application on a NoC environment we do 
not need the internal communication details as this traffic does 
not get routed over the network. Therefore, we abstract out 
these details. As a next step we check the number of reads, 
writes, clock ticks, 1st level cache hits and cache misses, 2nd 
level cache hits and cache misses, and the bus activity. We 
further analyze the functional dependencies from the number 
of reads and writes and construct the final call-graphs for 
inter-component communications. 

 

 
 

Fig. 10: Algorithm for extracting call-graphs using Intel VTune [9]. 

V. RESULTS 
We implemented the NoC components on an FPGA to 

extract the total NoC area as well as the area information of 
each component. A system is defined in terms of its 
components. Using Impulse C, individual components of a 
system can be described as C functions. These functions are 
executed independently as processes. These processes can be 

declared as a hardware or software process. If the component 
is defined as a hardware process, then it gets implemented on 
the FPGA hardware. If defined as a software process, then the 
component is implemented in a soft-core processor. Impulse C 
code for all the processes in a system can be developed with 
any C++ compiler. A configuration function partitions the 
processes into running as either software or hardware. The 
configuration function also defines the way the process 
interfaces communicate, linking them all together as a whole 
system. The functionality of the prototype can be simulated 
and debugged, if needed, on a workstation before even being 
ported to the FPGA. 

We designed the InputBuffer class as a smart buffer with a 
built-in scheduler, which forwards the data as per certain 
scheduling criteria. A buffer can be designed as being 32-bit 
or 64-bit wide. In the 64-bit buffer, the chip area will increase 
but the number of packets to be transmitted will be reduced to 
about half as compared to the 32-bit buffer. Therefore, it is 
likely that the latency of a system will be reduced by 
transmitting a larger packet. But it will require support for 
more parallel transmission lines (bus) in case of a parallel data 
transmission. Table 2 shows the number of gates taken by 
different buffer sizes for 32-bit and 64 bit buffers. 
 

Table 2: Gate counts for different buffer sizes and bit widths. 

Buffer Size Gate Count for 32-
Bit 

Gate Count for 64-
Bit 

Size 1 11,427 16,733 
Size 2 13,381 20,135 
Size 3 14,510 22,207 
Size 4 14,920 23,292 
Size 5 15,526 24,594 
Size 10 16,108 24,940 

 
Note that the number of gates for a 64-bit buffer is not 

twice that of a 32-bit buffer. This is because every buffer has a 
scheduler for scheduling the data packets from the buffer. This 
scheduler occupies a fixed gate count that does not change 
with the buffer bit width. 

Fig. 11 shows the number of gates needed to implement 
the NoC Router class, and the NoC Scheduler class with 
different scheduling algorithms: FCFS, RR, PB, and PBRR. 
 
 
 
 
 
 
 
 
 

 
Fig. 11: Number of gates for NoC Router and Scheduler classes. 

 
Using the resource estimation methodology of Section IV 

we abstracted the inter-component communication (see Fig. 
12) for a foreman video bitstream using a H.264 Nokia 
decoder. The video had 15 frames per second with a resolution 
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of 176×144 pixels. The compressed bitstream had a bit rate of 
15 Kb/sec.  This traffic is modeled on a six-core NoC based-
architecture. Arrows in Fig. 12 show the amount of traffic that 
flows from one component to another. We modeled this traffic 
on MLDesigner to calculate latencies offered by each H.264 
component. 

 

 
 

Fig. 12: Inter-component communication in the H.264 decoder. 
 

We used a flit size of 64 bytes. Out of these 64 bytes, 8 
bytes constitute the flit header used for sending the destination 
address, the source address and the priority level. We mapped 
the components with the highest intercommunication next to 
each other (single hop distance). This reduced the network 
latency. Fig. 13 shows the data packet arrival latency results 
for the foreman video (15 frames at 15 Kb/sec bitstream).  
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Fig. 13: Data packet arrival latency for H.264 foreman video. 

VI. RELATED WORK 

 In [10], the authors used the OPNET network design and 
simulation environment to model an application-specific NoC 
and analyze its performance, the application being an H.264 
HDTV decoder. The actual circuit design was done using 
SPICE. In [11], the authors mapped a H.264 decoder onto two 
networks-on-chip based on a mesh architecture and a fat-tree 
architecture, with the goal to maximize throughput while 
minimizing energy consumption, while in [12], they used tree-

based NoC’s; NS-2 was used for simulations. In [13], a 
MPEG-4 arbitrary-shaped video decoder is mapped onto a 
NoC, in order to demonstrate a hierarchical Quality-of-Service 
framework. In [14] the authors used the CASSE system-level 
tool to map a MPEG-4 decoder onto a multicore system-on-
chip.  

VI. CONCLUSION 
We demonstrated a methodology for modeling and mapping 

applications onto a NoC architecture. A concurrency model 
for the NOC was first developed using FSP, and analyzed 
using LTSA. The NoC was then designed using the 
MLDesigner system-level modeling environment, where each 
component was represented as a class. We then abstracted area 
results for a 4×3 mesh-based NoC architecture. We mapped a 
Nokia H.264 decoder application onto the NoC and showed 
the latency results for a single abstracted bitstream.   
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