
SysCon 2008 – IEEE International Systems Conference
Montreal, Canada, April 7–10, 2008

Component selection strategies based on system requirements’ dependencies on
component attributes

Georgiana L. Hamza-Lup1, Ankur Agarwal1, Ravi Shankar1, Cyril Iskander2

1 Computer Science & Engineering, Florida Atlantic University, Boca Raton, FL, USA

2 Hi-Tek Multisystems, Canada
{ghamza, ankur, ravi} @cse.fau.edu, cyril_iskander@hotmail.com

Abstract – Rapid increases in systems complexity have raised the
need to exploit the “design & reuse” principle to its full potential.
The proposed research is targeted towards component reuse,
specifically towards component selection. We assume a component
specification method has been chosen and a component library has
been designed and built. The problem we address in this paper is
choosing a subset of components from a library of components, such
that the resulting integrated system satisfies certain requirements.
Our proposed approach contains two main stages. First, we address
those requirements that can help us reduce our search space and
secondly, we perform an intelligent search in our reduced search
space. In the second stage we apply a Greedy approach for selecting
components from our reduced search space. The challenge here is
assessing how well a certain component satisfies the performance
requirements of the target system, as these performance
requirements usually refer to the system as a whole and not to
individual components. To address this challenge we focused on
mapping system performance requirements onto component
characteristics. We will illustrate our proposed approach for
component selection with a simplified example of selecting the
components for a 4x4 mesh-based NOC (Network-on-Chip)
architecture.

Keywords – Component selection, component reuse, optimal
architectures

I. INTRODUCTION

Rapid increases in systems complexity have raised the
need to exploit the “design & reuse” principle to its full
potential. The proposed research is targeted towards
component reuse, specifically towards component selection.
We assume a component specification method has been
chosen and a component library has been designed and built.
The problem we address in this paper is choosing a subset of
components from a library of components, such that the
resulting integrated system satisfies certain requirements
(functional and non-functional). Depending on the system
requirements, the selection process may have two outcomes:
either one or more candidate combinations of components are
found, or, some requirements cannot be satisfied with the
existing components and as a result, either new components
need to built, or the system requirements need to be relaxed.
In this paper, we assume that when the second outcome
occurs, the system requirements are relaxed and the selection
process is restarted.

Current approaches for addressing component selection
are mainly driven by functional requirements and/or by non-
functional system requirements that depend directly on the
attributes of the individual components. For example, in [1]
and [2] the authors assume that every component satisfies one
or more functional requirements and the goal is to select the
minimal set of components that together satisfy a set of given
system requirements. While [1] and [2] aim at minimizing the
number of components of the resulting system, in [3] the cost
of the final system is minimized. This non-functional system
requirement is directly dependent on the attributes of the
system components. Specifically, the cost of the final system
is the sum of the costs of the individual components. In [4]
reliability and delivery time requirements are specified in
addition to cost requirements. Again, these requirements
depend directly on the attributes of the system components.
Specifically, system reliability, defined as the probability of
the system to function without failure, is computed as the
product of the reliabilities of the individual components, and
system delivery time is computed as the maximum delivery
time among all components.

In contrast to existing approaches, our proposed
component selection technique is driven by non-functional
system requirements, whose dependencies on the components
attributes cannot be expressed by exact mathematical
formulas. Therefore, our goal is to extract and approximate
these dependencies, so that we can predict with certain
accuracy the characteristics of a system, from the attributes of
the individual components.

The remainder of this paper is organized as follows. In
Section 2 we present our requirements categorization and our
component selection algorithm. In Section 3, we briefly
explain our approaches for extracting the dependencies of the
system characteristics on the components attributes, and in
Section 4 we illustrate them and the selection algorithm with
an example. Finally, we conclude and discuss our future work
in Section 5.

II. REQUIREMENTS CATEGORIZATION AND
COMPONENT SELECTION ALGORITHM

In our work we assume that each component (hardware or
software) is characterized by a set of functional attributes and
a set of non-functional attributes that include implementation,
interface and performance characteristics. For example, for a

hardware component whose functionality is to store data (that
is, a buffer), implementation characteristics could include the
size of the buffer or the scheduling policies used (e.g., RR:
round robin, FCFS: first-come-first-served, PB: priority-
based), interface characteristics could be in the form of
compatibility information, and performance characteristics
could be the number of gates used (area) or power
consumption.

The requirements that the integrated system of
components need to satisfy can again be categorized as
functional or non-functional. Functional system requirements
can be easily mapped on the functional attributes of
individual components. If a system requirement is that
functionalities A, B and C need to be assured, the we should
be looking for components with functionalities A, B, C, AB,
BC, AC or ABC. Implementation & interface system
requirements again translate directly into component
requirements and can be mapped onto component attributes.
For example, if the system needs to be compatible with
platform X, than all individual components need to be
compatible with platform X. System performance
requirements on the other hand, might not map directly onto
component performance attributes. In these situations, our
goal becomes approximating the dependency of these
requirements on the individual component attributes.

System requirements (functional and non-functional)
represent our selection criteria in the component selection
process and our approach is to categorize them based on their
selectivity as follows: exact matches (e.g., functionality =
buffer), range matches (e.g., system latency < 70ns) and
optimal matches (e.g., number of gates used should be
minimized).

Assuming a large component library, an exhaustive
approach in which all potential combinations of components
are evaluated against the target system requirements, is
unfeasible as it has a very high computational cost [1], [2].
Therefore, our proposed approach for component selection is
based on approximation and has two main stages: first, we
address those requirements that can help us reduce our search
space and secondly, we perform an intelligent search in our
reduced search space. In stage one we propose the following
order of considering requirements.
1) First, functional requirements are applied, as these are

always in the form of exact matches. As a result of this
filtering, all components that do not satisfy any of the
target system functional requirements are eliminated.

2) Then implementation and interface requirements are
considered. If these are in the form of exact or range
matches, then they can be used to filter out those
components that do not satisfy them. If they are in the
form of optimization matches, they can only be used in
searching, in stage two.

3) In the third step, performance requirements are applied.
However, these requirements usually refer to an
integrated system of components rather than individual
components. Therefore, only those performance
requirements that refer or translate to an individual

component and are specified in the form of exact or
range match can be applied in this first stage. For
example, a requirement that the system reliability has to
be greater than 50% can be used to eliminate all
components whose reliability is less than that. Note that
this requirement will be used again in the second stage.

In the second stage we apply a Greedy approach for
selecting components from our reduced search space. Thus,
we build the system incrementally, by choosing at each step
the component that “seems” (at that point) to be the most
helpful in achieving our objectives (the target system
requirements). If at any step we detect that the system
requirements can no longer be satisfied based on the choices
of components made so far, backtracking is required in order
to allow us to follow a different path in our search space.

Different heuristics can be used in determining the “best”
component to be chosen at each step. Our goal is to find the
best order in which to evaluate/consider components such
that to minimize backtracking and thus the search time. As
mentioned in the previous section, the challenge here is
assessing how well a certain component satisfies the
performance requirements of the target system, as these
performance requirements usually refer to the system as a
whole and not to individual components. To address this
challenge, we focused on mapping system performance
requirements onto component characteristics. For example,
we want to determine how the size and the scheduling criteria
of a buffer influence the latency of packets through the target
system. In our previous work [5], we proposed and
implemented a Greedy based technique in which we have
used only direct dependencies between the system
requirements & component attributes. For example, the
number of gates (area) used by the target system is directly
dependent on the buffer sizes and the scheduling algorithms
of the constituents components. In this paper we propose two
approaches for extracting indirect dependencies between
system performance and components characteristics,
dependencies that cannot be expressed as exact mathematical
formulas. The first approach uses non-linear regression
analysis and the second approach uses artificial intelligent
techniques, specifically decision trees and conditional
probabilities. With regression analysis we are aiming at
obtaining approximations of how well a combination of
components satisfies certain performance requirements.
Decision trees classifiers and conditional probabilities will be
used to order the components based on their probability of
satisfying different system performance requirements. In the
next section, we will illustrate our proposed approaches with
an example.

III. EXPRIMENTAL RESULTS

We illustrate our component selection algorithm with a
simplified example of selecting the components for a 4x4
mesh-based NOC architecture. An NOC is a multi-core
architecture that provides a communication infrastructure for
different resources, such as Application Specific Processors

(ASP), Application Specific Integrated Circuit (ASIC)
blocks, General Purpose Processors (GPP), Field
Programmable Gate Arrays (FPGA), memory or any other
hardware blocks. Communication between resources is based
on a packet switching protocol [6][7]. Figure 1 illustrates a
3x3 mesh-based NOC architecture. Each resource (denoted
P/C as a producer/consumer of data packets) is connected to a
network switch (NS) through two buffers, an input buffer and
an output buffer. Every switch is also connected to four other
switches (one for each direction north, south, east, and west)
through four input buffers and four output buffers.

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
I

N
I

N
I

N
I

N
I

N
I

N
I

N
I

N
I

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
I

N
I

N
I

N
I

N
I

N
I

N
I

N
I

N
I

Figure 1. A 3x3 mesh-based NOC architecture

Thus, the main functional components of an NOC
architecture are: resources, buffers, and switches. These
components are characterized by several non-functional
attributes. Resources, which are data producers, are
characterized by the packet injection rate (that is, the rate at
which they produce packets to be delivered through the
NOC). We assume 10 possible values for the injection rate:
from 0.1, 0.2,…, 0.9, 1.0. Buffers are characterize by size and
scheduling criteria, and switches, are also characterized by
scheduling criteria. We assume 6 possible values for the
buffer size: 1, 2, 3, 4, 5 and 10, and 4 possible values for the
scheduling criteria: PB (Priority Based), PBRR (Priority
Based Round Robin), RR (Round Robin) and FCFS (First
Come First Served). Assuming the buffers and switches use
the same scheduling criteria results in 10x6x4 = 240 potential
combinations of resources, buffers and switches, in an NOC
architecture. Depending on the characteristics of the
components integrated into the NOC architecture, the
resulting system will exhibit different performances.

The performance requirements for the integrated system
are expressed in terms of latency for high, medium and low
priority packets and number of gates used (or area).
Specifically, the system requirements for our example, are as
follows: first, a resource, a buffer and a switch must be
selected; second, the buffer size should be no less than 3;
third, latency for priority packets flowing through the
integrated system should be no greater than 30ns. In our

component selection algorithm the first stage is reducing the
search space, by eliminating those components that do not
satisfy the system requirements. At this stage we are looking
for functional requirements and implementation or interface
requirements that are in the form of exact or range matches.
Our first system requirement is actually a functional
requirement in the form of an exact match. It allows us to
eliminate from our search space all components from our
library, except resources, buffers and switches. The second
requirement is an implementation requirement in the form of
a range match and it allows us to reduce our search space
further, by eliminating the buffers whose sizes are less than 3.
Our third requirement is a performance requirement in the
form of range match, so it cannot be used in this stage to
further reduce the search space.

In the second stage of our component selection algorithm,
we perform a greedy search through our reduced search space
and select at each step one more component until the
resulting system is complete or until the system requirements
are violated. If the second case occurs we backtrack. To
minimize backtracking we have to choose at each step the
component that best satisfies the requirements. For this, we
need to map the performance requirements on the component
attributes. Specifically, we determine the dependencies of the
latency of high, medium and low priority packets on the
injection ratio, buffer size, buffer scheduling criteria and
switch scheduling criteria. For this purpose, we assume that
using system simulation software (for example, MLDesigner)
we can measure the latency and other performance
characteristics of a limited number of combinations of
components. Table 1 shows a subset of our measurements.
Analyzing these measurements will help determining the
system performance dependencies onto component attributes
and the details of this analysis are presented in the next
subsections.

Table 1. Latency for high, mid and low priority packets

INJECTION
RATE

(I)

BUFF.
SIZE
(B)

SCHED.
CRITERIA

(S)

LATENCY
HIGH PR.

(L1)

LATENCY
MID PR.

(L2)

LATENCY
LOW PR.

(L3)
0.1 2 PB 24 24 24
0.5 2 PB 25 25 25
1.0 2 PB 27 28.39 32.98
0.1 5 PB 21.88 22.1 63.73
0.5 5 PB 25 25 68.02
1.0 5 PB 26.7 28.73 76.16
0.1 10 PB 22.02 22.1 137.07
0.5 10 PB 25 25 139.69
1.0 10 PB 26.76 28.26 146.14

A. Regression Analysis

Regression is a mathematical measure of the average
relationship between a response variable and one or more
input variables. Data latency is our response variable or the
dependent variable. However, we have three different types
of latencies, for high priority, mid priority and low priority
data packets. Thus, we have three different response variables

(L1, L2, L3). These response variables are dependent upon a
number of input variables: injection rate (I), buffer size (B)
and scheduling criteria (S). Injection rate is numeric and we
assumed latency information is available for 3 levels of the
injection rate: 0.1, 0.5 and 1.0. Buffer size is also numeric
and we assume again that latency information is available for
3 buffer sizes: 2, 5, and 10. Scheduling criteria is a non-
numeric input, so we have mapped each of it 4 possible
values into a number: FCFS is mapped to 1, RR to 2, PB to 3,
and PBRR to 4. Table 1 shows latency measurements for PB
scheduling criteria. We have similar latency measurements
for the other three scheduling criteria therefore, in total we
have 9x3 = 27 measurements. These measurements represent
our input into the regression analysis. Our goal was to
identify and select the best regression model for each of our
three response variables (L1, L2, L3), based on the least
square method [8]. For each response variable, four different
models are analyzed (quadratic model that includes main
effects + interaction + square terms, model with main effects
+ square terms, model with only main effects, and model with
main effects + interactions) and the one with the least error is
selected. The quadratic model turns out to be the best for all
three response variables and the resulting regression
equations are as follows:

L1 = 49.64 - 40.96*S + 10.53*B + 8.30*I – 3.03*S*B +
 + 0.06*B*I – 0.44*S*I + 9.28*S2 - 0.03*B2 - 1.63*I2

L2 = 49.06 - 41.43*S + 10.58*B + 10.43*I – 2.97*S*B +
 + 0.004*B*I – 1.24*S*I + 9.49*S2 - 0.03*B2 – 0.86*I2

L3 = 68.82 - 54.23*S + 2.29*B - 1.77*I – 2.65*S*B +
 + 0.11*B*I + 1.49*S*I + 9.63*S2 + 0.04*B2 + 5.66*I2

Excel Data analysis Toolpak was used for our analysis.

Using the above equations we will be able to assess how well
a certain combination of components (resources, buffers and
switches) satisfies a latency performance requirement.
Further statistical analysis, based on Taguchi 2–step
optimization technique, indicate that buffer size (B) and
scheduling criteria (C) are the most important factors in the
above equations, and injection ratio (I) has the least
influence.

B. Decision Trees

Our second approach to determine system performance
dependency on component attributes is based on decision
trees. We divide our range of latency values into several
classes as illustrated in Table 2. Then we use the same
measurements as for the regression analysis approach, plus
additional measurements for buffer sizes 1, 3 and 4. We have
used XLMiner for our analysis and for building a
classification tree for each of the three outputs, that is, latency
for high, mid and low priority packets. The size of the
training set was 58 and the size of the validation set was 14.
The validation set was used for pruning the trees. The

resulting minimum error trees are shown in Figures 2,3 and 4
for high, mid and low priority packets, respectively.

Table 2. Latency classes

LATENCY
VALUES

CLASS LATENCY
VALUES

CLASS

10..19 2 80..89 9
20..29 3 90..99 10
30..39 4 100..109 11
40..49 5 110..119 12
50..59 6 120..129 13
60..69 7 130..139 14
70..79 8 140..149 15

Our observation from the regression analysis, that the

buffer size and scheduling criteria have the most significant
influence on the latency, is reinforced by our decision trees.
The injection ratio is used by only two of the decision trees
and it appears on the lowest levels, meaning that it has the
least influence on latency.

Figure 2. Classification tree for latency classes for high priority packets

Figure 3. Classification tree for latency classes for mid priority packets

Figure 4. Classification tree for latency classes for low priority packets

Using the same tool, XLMiner, we have computed the
conditional probabilities for each input variable and for each
latency class. Table 3 shows a subset of these probabilities
for latency classes 2 and 3, for high priority packets. For
example, if one of our requirements is that the latency for
high priority data packets must be less than 30ns (meaning it
should fall into latency class 3 or lower), then there is a
higher probability of achieving this if we select a buffer of
size 1. If this is not an option, due to other system
requirements, then the next best probability is obtained for a
buffer of size 2, followed by a buffer of size 4, 5 or 10.
Similarly, in terms of scheduling criteria, we have the best
probability (0.35 + 0.28 = 0.63) of satisfying the target
system requirements, if we select the scheduling criteria
number 4, that is PBRR. The next best choice is scheduling
criteria number 2, that is RR (with a probability of 0.25 +
0.28 = 0.53), followed by criteria number 3, that is PB (with a
probability of 0.33+0.14 = 0.47).

Table 3. Conditional probabilities for latency classes 2 and 3 for high
priority packets

 Latency Classes
2 3

Input Variables
Value Probability Value Probability

0.1 0.5714286 0.1 0.2307692
0.5 0.4285714 0.5 0.2820513 INJECTION

RATE
1 0 1 0.4871795
1 1 1 0.1025641
2 0 2 0.2051282
3 0 3 0.1538462
4 0 4 0.1794872
5 0 5 0.1794872

BUFFER SIZE

10 0 10 0.1794872
1 0.2857143 1 0.0512821
2 0.2857143 2 0.2564103
3 0.1428571 3 0.3333333

SCHEDULING
CRITERIA

4 0.2857143 4 0.3589744

Basically, using these conditional probabilities we can
impose a certain ordering between components, which will be
used when evaluating components during the Greedy search,
in the second stage of our component selection algorithm.

For example, to satisfy our third system requirement, that
latency for high priority packets should be less than 30ns, we
will first select the components with the highest probability
of satisfying this requirement. This results in selecting a
resource with injection rate 0.1, a buffer with size 4 (because
buffer sizes 1 and 2 have already been eliminated in the first
stage) and scheduling criteria 4, that is PBRR. Based on these
selections, we then evaluate latency for high priority packets
using the first equation from our regression analysis. L1
evaluates to 28.1ns which is less than 30ns, therefore our
third requirement is now satisfied and we have one potential
solution to our component selection problem. If more than
one solution is desired, we can simply force the algorithm to
backtrack whenever a solution is found and thus, the
algorithm will search for more solutions.

IV. CONCLUSION

In this paper, we have proposed a component selection
technique based on system requirements dependencies on
component attributes. We also proposed a requirements
categorization scheme that allows us to faster reduce our
search space, before we perform an intelligent search through
it. The Greedy algorithm proposed for searching, evaluates
components, starting with those that have a higher probability
of satisfying the target system requirements. These
probabilities were computed in advance and used to order
components. Regression analysis was used to approximate
how well a certain component or combination of components
can satisfy a certain system requirement.

In our future work we propose to investigate scenarios in
which a subset of components satisfying the system
requirements cannot be found within the existing components
and new components need to be developed. The challenge
here is defining the characteristics of the components to be
developed, given the unsatisfied system requirements.

REFERENCES

[1] R.G. Bartholet, D.C. Brogan, P.F. Reynolds Jr., “The Computational
Complexity of Component Selection in Simulation Reuse”, 2005
Winter Simulation Conf., pp. 2472-2481.

[2] M.R. Fox, D.C. Brogan, P.F. Reynolds, “Approximating Component
Selection”, 2004 Winter Simulation Conf., vol.1 , pp. 429-434.

[3] N. Haghpana, S. Moaven, J. Habibi, M. Kargar, S.H. Yeganeh,
“Approximation Algorithms for Software Component Selection
Problem”, Asia-Pacific Software Engineering Conf, 2007, pp. 159-166.

[4] P.Potena, “Composition and Tradeoff of Non-Functional Attributes in
Software Systems: Research Directions”, the 6th Joint Meeting on
European software engineering conf. & the ACM SIGSOFT symp. on
the foundations of software engineering, 2007, pp. 583-586.

[5] A. Agarwal, G. Hamza-Lup, R. Shankar, J. Ansley, “An Integrated
Methodology for QoS Driven Reusable Component Design and
Component Selection”, 1st Annual IEEE Systems Conf., 2007, pp.1-7.

[6] L. Benini, D. Bertozzi, “Network on chip architecture and design
methods”, IEEE Computation Digital Technology, vol. 152, no. 2,
2005, pp. 261-271.

[7] L. Benini, G. De Micheli, “Networks on chip: a new SOC paradigm“,
IEEE Computer, vol. 35, no. 1, 2002, pp. 70-78.

[8] R. Christensen, “Analysis of variance, design and regression applied
statistical methods”, 1st Edition, Chapman and Hall Publication, 1996.

