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Abstract – Rapid increases in systems complexity have raised the 
need to exploit the “design & reuse” principle to its full potential. 
The proposed research is targeted towards component reuse, 
specifically towards component selection. We assume a component 
specification method has been chosen and a component library has 
been designed and built. The problem we address in this paper is 
choosing a subset of components from a library of components, such 
that the resulting integrated system satisfies certain requirements. 
Our proposed approach contains two main stages. First, we address 
those requirements that can help us reduce our search space and 
secondly, we perform an intelligent search in our reduced search 
space. In the second stage we apply a Greedy approach for selecting 
components from our reduced search space. The challenge here is 
assessing how well a certain component satisfies the performance 
requirements of the target system, as these performance 
requirements usually refer to the system as a whole and not to 
individual components. To address this challenge we focused on 
mapping system performance requirements onto component 
characteristics. We will illustrate our proposed approach for 
component selection with a simplified example of selecting the 
components for a 4x4 mesh-based NOC (Network-on-Chip) 
architecture. 
 
Keywords – Component selection, component reuse, optimal 
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I. INTRODUCTION 

Rapid increases in systems complexity have raised the 
need to exploit the “design & reuse” principle to its full 
potential. The proposed research is targeted towards 
component reuse, specifically towards component selection. 
We assume a component specification method has been 
chosen and a component library has been designed and built. 
The problem we address in this paper is choosing a subset of 
components from a library of components, such that the 
resulting integrated system satisfies certain requirements  
(functional and non-functional). Depending on the system 
requirements, the selection process may have two outcomes: 
either one or more candidate combinations of components are 
found, or, some requirements cannot be satisfied with the 
existing components and as a result, either new components 
need to built, or the system requirements need to be relaxed. 
In this paper, we assume that when the second outcome 
occurs, the system requirements are relaxed and the selection 
process is restarted.  

Current approaches for addressing component selection 
are mainly driven by functional requirements and/or by non-
functional system requirements that depend directly on the 
attributes of the individual components. For example, in [1] 
and [2] the authors assume that every component satisfies one 
or more functional requirements and the goal is to select the 
minimal set of components that together satisfy a set of given 
system requirements. While [1] and [2] aim at minimizing the 
number of components of the resulting system, in [3] the cost 
of the final system is minimized. This non-functional system 
requirement is directly dependent on the attributes of the 
system components. Specifically, the cost of the final system 
is the sum of the costs of the individual components. In [4] 
reliability and delivery time requirements are specified in 
addition to cost requirements. Again, these requirements 
depend directly on the attributes of the system components. 
Specifically, system reliability, defined as the probability of 
the system to function without failure, is computed as the 
product of the reliabilities of the individual components, and 
system delivery time is computed as the maximum delivery 
time among all components. 

In contrast to existing approaches, our proposed 
component selection technique is driven by non-functional 
system requirements, whose dependencies on the components 
attributes cannot be expressed by exact mathematical 
formulas. Therefore, our goal is to extract and approximate 
these dependencies, so that we can predict with certain 
accuracy the characteristics of a system, from the attributes of 
the individual components.  

The remainder of this paper is organized as follows. In 
Section 2 we present our requirements categorization and our 
component selection algorithm. In Section 3, we briefly 
explain our approaches for extracting the dependencies of the 
system characteristics on the components attributes, and in 
Section 4 we illustrate them and the selection algorithm with 
an example. Finally, we conclude and discuss our future work 
in Section 5. 

II. REQUIREMENTS CATEGORIZATION AND 
COMPONENT SELECTION ALGORITHM 

In our work we assume that each component (hardware or 
software) is characterized by a set of functional attributes and 
a set of non-functional attributes that include implementation, 
interface and performance characteristics. For example, for a 



 

 

hardware component whose functionality is to store data (that 
is, a buffer), implementation characteristics could include the 
size of the buffer or the scheduling policies used (e.g., RR: 
round robin, FCFS: first-come-first-served, PB: priority-
based), interface characteristics could be in the form of 
compatibility information, and performance characteristics 
could be the number of gates used (area) or power 
consumption.  

The requirements that the integrated system of 
components need to satisfy can again be categorized as 
functional or non-functional. Functional system requirements 
can be easily mapped on the functional attributes of 
individual components. If a system requirement is that 
functionalities A, B and C need to be assured, the we should 
be looking for components with functionalities A, B, C, AB, 
BC, AC or ABC. Implementation & interface system 
requirements again translate directly into component 
requirements and can be mapped onto component attributes. 
For example, if the system needs to be compatible with 
platform X, than all individual components need to be 
compatible with platform X. System performance 
requirements on the other hand, might not map directly onto 
component performance attributes. In these situations, our 
goal becomes approximating the dependency of these 
requirements on the individual component attributes.  

System requirements (functional and non-functional) 
represent our selection criteria in the component selection 
process and our approach is to categorize them based on their 
selectivity as follows: exact matches (e.g., functionality = 
buffer), range matches (e.g., system latency < 70ns) and 
optimal matches (e.g., number of gates used should be 
minimized). 

Assuming a large component library, an exhaustive 
approach in which all potential combinations of components 
are evaluated against the target system requirements, is 
unfeasible as it has a very high computational cost [1], [2]. 
Therefore, our proposed approach for component selection is 
based on approximation and has two main stages: first, we 
address those requirements that can help us reduce our search 
space and secondly, we perform an intelligent search in our 
reduced search space. In stage one we propose the following 
order of considering requirements. 
1) First, functional requirements are applied, as these are 

always in the form of exact matches. As a result of this 
filtering, all components that do not satisfy any of the 
target system functional requirements are eliminated. 

2) Then implementation and interface requirements are 
considered. If these are in the form of exact or range 
matches, then they can be used to filter out those 
components that do not satisfy them. If they are in the 
form of optimization matches, they can only be used in 
searching, in stage two. 

3) In the third step, performance requirements are applied. 
However, these requirements usually refer to an 
integrated system of components rather than individual 
components. Therefore, only those performance 
requirements that refer or translate to an individual 

component and are specified in the form of exact or 
range match can be applied in this first stage. For 
example, a requirement that the system reliability has to 
be greater than 50% can be used to eliminate all 
components whose reliability is less than that. Note that 
this requirement will be used again in the second stage.  

In the second stage we apply a Greedy approach for 
selecting components from our reduced search space. Thus, 
we build the system incrementally, by choosing at each step 
the component that “seems” (at that point) to be the most 
helpful in achieving our objectives (the target system 
requirements). If at any step we detect that the system 
requirements can no longer be satisfied based on the choices 
of components made so far, backtracking is required in order 
to allow us to follow a different path in our search space.  

Different heuristics can be used in determining the “best” 
component to be chosen at each step. Our goal is to find the 
best order in which to evaluate/consider components such 
that to minimize backtracking and thus the search time. As 
mentioned in the previous section, the challenge here is 
assessing how well a certain component satisfies the 
performance requirements of the target system, as these 
performance requirements usually refer to the system as a 
whole and not to individual components. To address this 
challenge, we focused on mapping system performance 
requirements onto component characteristics. For example, 
we want to determine how the size and the scheduling criteria 
of a buffer influence the latency of packets through the target 
system. In our previous work [5], we proposed and 
implemented a Greedy based technique in which we have 
used only direct dependencies between the system 
requirements & component attributes. For example, the 
number of gates (area) used by the target system is directly 
dependent on the buffer sizes and the scheduling algorithms 
of the constituents components. In this paper we propose two 
approaches for extracting indirect dependencies between 
system performance and components characteristics, 
dependencies that cannot be expressed as exact mathematical 
formulas. The first approach uses non-linear regression 
analysis and the second approach uses artificial intelligent 
techniques, specifically decision trees and conditional 
probabilities. With regression analysis we are aiming at 
obtaining approximations of how well a combination of 
components satisfies certain performance requirements. 
Decision trees classifiers and conditional probabilities will be 
used to order the components based on their probability of 
satisfying different system performance requirements. In the 
next section, we will illustrate our proposed approaches with 
an example. 

III. EXPRIMENTAL RESULTS 

We illustrate our component selection algorithm with a 
simplified example of selecting the components for a 4x4 
mesh-based NOC architecture. An NOC is a multi-core 
architecture that provides a communication infrastructure for 
different resources, such as Application Specific Processors 



 

 

(ASP), Application Specific Integrated Circuit (ASIC) 
blocks, General Purpose Processors (GPP), Field 
Programmable Gate Arrays (FPGA), memory or any other 
hardware blocks. Communication between resources is based 
on a packet switching protocol [6][7]. Figure 1 illustrates a 
3x3 mesh-based NOC architecture. Each resource (denoted 
P/C as a producer/consumer of data packets) is connected to a 
network switch (NS) through two buffers, an input buffer and 
an output buffer. Every switch is also connected to four other 
switches (one for each direction north, south, east, and west) 
through four input buffers and four output buffers.  
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Figure 1. A 3x3 mesh-based NOC architecture 

Thus, the main functional components of an NOC 
architecture are: resources, buffers, and switches. These 
components are characterized by several non-functional 
attributes. Resources, which are data producers, are 
characterized by the packet injection rate (that is, the rate at 
which they produce packets to be delivered through the 
NOC). We assume 10 possible values for the injection rate: 
from 0.1, 0.2,…, 0.9, 1.0. Buffers are characterize by size and 
scheduling criteria, and switches, are also characterized by 
scheduling criteria. We assume 6 possible values for the 
buffer size: 1, 2, 3, 4, 5 and 10, and 4 possible values for the 
scheduling criteria: PB (Priority Based), PBRR (Priority 
Based Round Robin), RR (Round Robin) and FCFS (First 
Come First Served). Assuming the buffers and switches use 
the same scheduling criteria results in 10x6x4 = 240 potential 
combinations of resources, buffers and switches, in an NOC 
architecture. Depending on the characteristics of the 
components integrated into the NOC architecture, the 
resulting system will exhibit different performances.  

The performance requirements for the integrated system 
are expressed in terms of latency for high, medium and low 
priority packets and number of gates used (or area). 
Specifically, the system requirements for our example, are as 
follows: first, a resource, a buffer and a switch must be 
selected; second, the buffer size should be no less than 3; 
third, latency for priority packets flowing through the 
integrated system should be no greater than 30ns. In our 

component selection algorithm the first stage is reducing the 
search space, by eliminating those components that do not 
satisfy the system requirements. At this stage we are looking 
for functional requirements and implementation or interface 
requirements that are in the form of exact or range matches. 
Our first system requirement is actually a functional 
requirement in the form of an exact match. It allows us to 
eliminate from our search space all components from our 
library, except resources, buffers and switches. The second 
requirement is an implementation requirement in the form of 
a range match and it allows us to reduce our search space 
further, by eliminating the buffers whose sizes are less than 3. 
Our third requirement is a performance requirement in the 
form of range match, so it cannot be used in this stage to 
further reduce the search space. 

In the second stage of our component selection algorithm, 
we perform a greedy search through our reduced search space 
and select at each step one more component until the 
resulting system is complete or until the system requirements 
are violated. If the second case occurs we backtrack. To 
minimize backtracking we have to choose at each step the 
component that best satisfies the requirements. For this, we 
need to map the performance requirements on the component 
attributes. Specifically, we determine the dependencies of the 
latency of high, medium and low priority packets on the 
injection ratio, buffer size, buffer scheduling criteria and 
switch scheduling criteria. For this purpose, we assume that 
using system simulation software (for example, MLDesigner) 
we can measure the latency and other performance 
characteristics of a limited number of combinations of 
components. Table 1 shows a subset of our measurements. 
Analyzing these measurements will help determining the 
system performance dependencies onto component attributes 
and the details of this analysis are presented in the next 
subsections.  

 
Table 1. Latency for high, mid and low priority packets 

INJECTION
RATE 

(I) 

BUFF.
SIZE
(B) 

SCHED. 
CRITERIA 

(S) 

LATENCY 
HIGH PR. 

(L1) 

LATENCY
MID PR. 

(L2) 

LATENCY
LOW PR.

(L3) 
0.1 2 PB 24 24 24 
0.5 2 PB 25 25 25 
1.0 2 PB 27 28.39 32.98 
0.1 5 PB 21.88 22.1 63.73 
0.5 5 PB 25 25 68.02 
1.0 5 PB 26.7 28.73 76.16 
0.1 10 PB 22.02 22.1 137.07 
0.5 10 PB 25 25 139.69 
1.0 10 PB 26.76 28.26 146.14 

A. Regression Analysis 

Regression is a mathematical measure of the average 
relationship between a response variable and one or more 
input variables. Data latency is our response variable or the 
dependent variable. However, we have three different types 
of latencies, for high priority, mid priority and low priority 
data packets. Thus, we have three different response variables 



 

 

(L1, L2, L3). These response variables are dependent upon a 
number of input variables: injection rate (I), buffer size (B) 
and scheduling criteria (S). Injection rate is numeric and we 
assumed latency information is available for 3 levels of the 
injection rate: 0.1, 0.5 and 1.0. Buffer size is also numeric 
and we assume again that latency information is available for 
3 buffer sizes: 2, 5, and 10. Scheduling criteria is a non-
numeric input, so we have mapped each of it 4 possible 
values into a number: FCFS is mapped to 1, RR to 2, PB to 3, 
and PBRR to 4. Table 1 shows latency measurements for PB 
scheduling criteria. We have similar latency measurements 
for the other three scheduling criteria therefore, in total we 
have 9x3 = 27 measurements. These measurements represent 
our input into the regression analysis. Our goal was to 
identify and select the best regression model for each of our 
three response variables (L1, L2, L3), based on the least 
square method [8]. For each response variable, four different 
models are analyzed (quadratic model that includes main 
effects + interaction + square terms, model with main effects 
+ square terms, model with only main effects, and model with 
main effects + interactions) and the one with the least error is 
selected. The quadratic model turns out to be the best for all 
three response variables and the resulting regression 
equations are as follows: 

  
L1 = 49.64 - 40.96*S + 10.53*B + 8.30*I – 3.03*S*B +  
    + 0.06*B*I  – 0.44*S*I + 9.28*S2 - 0.03*B2 - 1.63*I2 
 
L2 = 49.06 - 41.43*S + 10.58*B + 10.43*I – 2.97*S*B +  
    + 0.004*B*I  – 1.24*S*I + 9.49*S2 - 0.03*B2 – 0.86*I2 
 
L3 = 68.82 - 54.23*S + 2.29*B - 1.77*I – 2.65*S*B +  
    + 0.11*B*I  + 1.49*S*I + 9.63*S2 + 0.04*B2 + 5.66*I2 
 
Excel Data analysis Toolpak was used for our analysis. 

Using the above equations we will be able to assess how well 
a certain combination of components (resources, buffers and 
switches) satisfies a latency performance requirement. 
Further statistical analysis, based on Taguchi 2–step 
optimization technique, indicate that buffer size (B) and 
scheduling criteria (C) are the most important factors in the 
above equations, and injection ratio (I) has the least 
influence.  

B. Decision Trees 

Our second approach to determine system performance 
dependency on component attributes is based on decision 
trees. We divide our range of latency values into several 
classes as illustrated in Table 2. Then we use the same 
measurements as for the regression analysis approach, plus 
additional measurements for buffer sizes 1, 3 and 4. We have 
used XLMiner for our analysis and for building a 
classification tree for each of the three outputs, that is, latency 
for high, mid and low priority packets. The size of the 
training set was 58 and the size of the validation set was 14. 
The validation set was used for pruning the trees. The 

resulting minimum error trees are shown in Figures 2,3 and 4 
for high, mid and low priority packets, respectively. 

  
Table 2. Latency classes 

LATENCY 
VALUES 

CLASS  LATENCY 
VALUES 

CLASS 

10..19 2  80..89 9 
20..29 3  90..99 10 
30..39 4  100..109 11 
40..49 5  110..119 12 
50..59 6  120..129 13 
60..69 7  130..139 14 
70..79 8  140..149 15 

 
Our observation from the regression analysis, that the 

buffer size and scheduling criteria have the most significant 
influence on the latency, is reinforced by our decision trees. 
The injection ratio is used by only two of the decision trees 
and it appears on the lowest levels, meaning that it has the 
least influence on latency.   

 

 
Figure 2. Classification tree for latency classes for high priority packets 

  

Figure 3. Classification tree for latency classes for mid priority packets 



 

 

 
Figure 4. Classification tree for latency classes for low priority packets 

Using the same tool, XLMiner, we have computed the 
conditional probabilities for each input variable and for each 
latency class. Table 3 shows a subset of these probabilities 
for latency classes 2 and 3, for high priority packets. For 
example, if one of our requirements is that the latency for 
high priority data packets must be less than 30ns (meaning it 
should fall into latency class 3 or lower), then there is a 
higher probability of achieving this if we select a buffer of 
size 1. If this is not an option, due to other system 
requirements, then the next best probability is obtained for a 
buffer of size 2, followed by a buffer of size 4, 5 or 10. 
Similarly, in terms of scheduling criteria, we have the best 
probability (0.35 + 0.28 = 0.63) of satisfying the target 
system requirements, if we select the scheduling criteria 
number 4, that is PBRR. The next best choice is scheduling 
criteria number 2, that is RR (with a probability of 0.25 + 
0.28 = 0.53), followed by criteria number 3, that is PB (with a 
probability of 0.33+0.14 = 0.47). 
 

Table 3. Conditional probabilities for latency classes 2 and 3 for high 
priority packets 

 Latency Classes 
2 3 

Input Variables 
Value Probability Value Probability 

0.1 0.5714286 0.1 0.2307692 
0.5 0.4285714 0.5 0.2820513 INJECTION 

RATE 
1 0 1 0.4871795 
1 1 1 0.1025641 
2 0 2 0.2051282 
3 0 3 0.1538462 
4 0 4 0.1794872 
5 0 5 0.1794872 

BUFFER SIZE 

10 0 10 0.1794872 
1 0.2857143 1 0.0512821 
2 0.2857143 2 0.2564103 
3 0.1428571 3 0.3333333 

SCHEDULING 
CRITERIA 

4 0.2857143 4 0.3589744 
 
Basically, using these conditional probabilities we can 
impose a certain ordering between components, which will be 
used when evaluating components during the Greedy search, 
in the second stage of our component selection algorithm.    

For example, to satisfy our third system requirement, that 
latency for high priority packets should be less than 30ns, we 
will first select the components with the highest probability 
of satisfying this requirement. This results in selecting a 
resource with injection rate 0.1, a buffer with size 4 (because 
buffer sizes 1 and 2 have already been eliminated in the first 
stage) and scheduling criteria 4, that is PBRR. Based on these 
selections, we then evaluate latency for high priority packets 
using the first equation from our regression analysis. L1 
evaluates to 28.1ns which is less than 30ns, therefore our 
third requirement is now satisfied and we have one potential 
solution to our component selection problem. If more than 
one solution is desired, we can simply force the algorithm to 
backtrack whenever a solution is found and thus, the 
algorithm will search for more solutions.  

IV. CONCLUSION 

In this paper, we have proposed a component selection 
technique based on system requirements dependencies on 
component attributes. We also proposed a requirements 
categorization scheme that allows us to faster reduce our 
search space, before we perform an intelligent search through 
it. The Greedy algorithm proposed for searching, evaluates 
components, starting with those that have a higher probability 
of satisfying the target system requirements. These 
probabilities were computed in advance and used to order 
components.  Regression analysis was used to approximate 
how well a certain component or combination of components 
can satisfy a certain system requirement.  
 
In our future work we propose to investigate scenarios in 
which a subset of components satisfying the system 
requirements cannot be found within the existing components 
and new components need to be developed. The challenge 
here is defining the characteristics of the components to be 
developed, given the unsatisfied system requirements. 
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