

CIM: Component Isolation and Monitoring for System-Level Verification

Glenn Freytag and Ravi Shankar
Center for Systems Integration, Florida Atlantic University, Boca Raton, FL

{glenn, ravi}@cse.fau.edu

Tomas Tezak
Software FX, Boca Raton, FL

<e-mail address>

Abstract

Electronic system-level (ESL) design is emerging as a
technique for managing the exponential growth in the
complexity of system hardware and software. An ESL
design flow begins with an abstract model of a complete
system, which allows architectural issues to be worked
out before the design is implemented in detail. However,
to maximize the efficiency of this top-down design
strategy, ESL simulation environments need a verification
methodology that can test components of a system model
in isolation without physically deconstructing the model.
Such a methodology would avoid the creation of multiple
testbenches to verify individual components. It would
also assist in tracing simulation failures to the design
components responsible for them. The methodology
would ensure that each component is exercised
sufficiently within the context of the system model to
minimize the chance of a fault going undetected. The
tests and the verification code written for the
methodology should be reusable at several levels of
design abstraction. In this paper, we present such a
methodology based on an abstract form of boundary
scan.

1. Introduction

A complex system-on-chip (SoC) presents many of the
same verification challenges as a densely populated
printed circuit board (PCB). A SoC design is made up of
many components (both hardware and software), just as a
PCB contains many devices. Ideally in both cases, a
testing environment should be able to target each
component individually and test it thoroughly. This
means that the environment must be able to create every
input condition that is possible for each component and
determine the resulting output from the component. Such

comprehensive testing is not practical in the case of the
PCB if the system probes only the inputs and outputs at
the PCB’s edge connector, because both the inputs to the
PCB and the outputs from the target component must
filter through many other devices. Similarly, it is not
feasible to test an entire SoC design thoroughly by
controlling and observing only its I/O channels.

To make individual devices more testable on a PCB, a
boundary scan methodology was introduced by the Joint
Test Action Group (JTAG) and was later standardized as
IEEE 1149.1 [1]. The standard specifies that a boundary
scan module should be inserted in every chip-level I/O
path of a device. Each boundary scan module is capable
of interrupting the normal data flow in or out of the
device, injecting alternate input data and latching output
data. In this way, all of the device’s I/O activity becomes
controllable and observable at the board level. A test
access port is also added to the device so that the testing
system can communicate with the boundary scan modules
directly rather than through other logic surrounding the
device. The boundary scan modules are connected in one
or more serial communication chains to keep the
boundary scan infrastructure simple and minimize its
impact on the physical size of the device.

The 1149.1 standard, along with several derivatives
and proprietary extensions, has revolutionized the testing
of physical devices in finished products. However, our
aim is to exploit the capabilities of boundary scan in the
verification of system designs prior to production without
adding code to the final product. To this end, we have
abstracted the low-level boundary scan concept to define
a test infrastructure for functional simulation of system-
level models. The infrastructure is implemented using
SystemC [2], a C++ class library that allows systems to be
modeled at any of several levels of abstraction. SystemC
also makes it possible to model both hardware and
software in the same environment using the same set of
language constructs. Our methodology is thus potentially

Copyright © 2008 Center for Systems Integration, Florida Atlantic University.

useful for testing either hardware or software components
of an SoC design. To highlight the generic nature and
adaptability of the methodology, we have named it
Component Isolation and Monitoring (CIM).

2. Architecture

This section describes the various aspects of the CIM
architecture, from the system-level infrastructure to the
operation of individual boundary scan modules.

2.1 System model

Figure 1 shows a block diagram of our CIM

architecture as applied to a system-level model. The
model is assumed to consist of a top-level module in
which are instantiated several modules representing the
major components of the design. An Interface Module
(IM) is inserted in every top-level communication path,
including both the system I/O and every internal path
between components. Also, three new interfaces (ctrl_in,
enable_in and ctrl_out) are added to the top-level module.
For a hardware design, these interfaces can be
implemented as user-defined ports. For software, they
could be three additional parameters of the main function.

A control path links the IMs together in a serial fashion
from ctrl_in to ctrl_out. A Driver and a Monitor use the
control path to communicate with the IMs. An enable
path connects enable_in to all of the IMs in parallel. The
Driver uses the enable path to trigger the driving of test
input and the capturing of the resulting output via the
IMs.

2.2 Interface Module

The structure of the IM is shown in Figure 2. The

contents of the IM may be implemented at any of several
levels of abstraction, from behavioral to RTL for
hardware testing or as a C++ object for software testing.
The data_in and data_out interfaces are inserted into a
system-level communication path as shown in Figure 1.
The ctrl_in and ctrl_out interfaces are inserted in the
control path, and enable_in is linked to the enable path.
Each instance of the IM is assigned a unique Module
Address so that the Driver can communicate with the
instance individually. The Mode value determines the
operating mode of the instance. The Data Pointer
references a location in the simulation host’s memory
where a Data List for the instance is stored. The Data
List can contain data that the IM captures from data_in or
data that the IM drives to data_out. The Data Buffer can
store either a value that arrives at data_in or a value
extracted from the Data List.

The IM can be programmed to operate in any of five
modes: Drive, Capture, Monitor, Pass or Isolate. Figure
3 illustrates the data flow through the IM for each mode.
In each illustration, component C1 feeds its output to the
data_in input of the IM, and the data_out output of the IM
drives the input of C2. Each mode in the figure is
described in detail below.

Design Component

ctrl_in

System Inputs

System Outputs

Driver

Design Component

IM IM

IM IM

IM IM

enable_in

ctrl_out

Monitor

Fig. 1. CIM applied to a system model.

system-level
 communication path
control path
enable path

ctrl_out ctrl_in

data_out data_in

enable_in

Module Address

Mode

Data Pointer

Data Buffer

Data List

Fig. 2. Structure of Interface Module (IM).

In the Drive mode (Fig. 3a), the IM interrupts the
normal data flow from C1 to C2 and instead sends input
from the Data List to C2. Input from C1 is ignored. This
mode isolates the input of a design component from the
rest of the system model and gives the testbench direct
control of the input.

The Capture mode (Fig. 3b) traps data that the IM
receives from C1 and records it to the Data List. In this
mode, data_out is forced to an appropriate value to
simulate a disconnection of the communication path to
C2. The value that represents a disconnected path
depends on the data type defined for the connection (e.g.
false for Boolean, zero for integer, etc.) This mode
captures the output of a design component while isolating
it from the rest of the system model.

The Monitor mode (Fig. 3c) records the value received
from C1, but it also allows the value to pass through the
IM to C2. This enables the testbench to test two or more
connected design components and monitor the interface
activity between them transparently.

The Pass mode (Fig. 3d) allows normal
communication from C1 to C2 without recording any of
the values that pass through. This mode can be used
when two or more design components are being tested
and there is no need to monitor an interface between
them.

The Isolate mode (Fig. 3e) blocks all communication
between C1 and C2. The IM should be set to this mode
when neither C1 nor C2 is being tested. In that scenario,
the Isolate mode saves simulation bandwidth by

preventing C1 and C2 from triggering events in each
other.

2.3 Packet Structure

To help simplify testing and speed up simulation, the

Driver and Monitor communicate with the IMs by means
of packets. Control packets are transmitted over the
control path, while enable packets are sent over the
enable path. The structures of these packet types are
depicted in Figures 4 and 5. The Driver directs a control
packet to a target IM by setting the Address field of the
packet to that IM’s Module Address. Each IM forwards
the packet to the next IM in the control path until the
packet reaches the target IM. Then, the target IM sets its
Mode and Data Pointer to the values in the control packet.
When the Mode and Data Pointer of each IM have been
set as needed for a given test, the Driver sends out an
enable packet with the Drive field set to true and the
Capture field set to false. Every IM that is in Drive mode
then drives input from its Data List to its data_out
interface. After allowing an appropriate delay for the
design to respond to the test input, the Driver sends
another enable packet with the Drive field set to false and
Capture set to true. Every IM that is in either Capture or
Monitor mode then records the value at its data_in
interface to its Data List.

2.4 Operating Sequence

During simulation, it is the responsibility of the Driver

to control the CIM architecture and of the Monitor to
retrieve the captured data. Before a test can be run on a
system model using the CIM architecture, the Driver must
initialize each IM by sending it a packet over the control
path. When an IM receives a control packet, it sets its
Mode and Data Pointer to the values that the packet
specifies. The mode of each IM is initialized according to
the location of the IM relative to the components being
tested. In general, if an IM has to feed an input of a
Component that is being tested, the Driver initializes the

Data List

IM C2

(a) Drive

Data List

(b) Capture

Data List

(c) Monitor

Data List

(d) Pass

Data List

(e) Isolate

Fig. 3. Interface Module operating modes.

data flow

disconnection

IM

IM IM

IM

C1 C2 C1

C2 C1 C2 C1

C2 C1 C1 components C2

Address Mode Data Pointer

Fig. 4. Structure of control packet.
(int) (int) (DataList *)

Drive Capture

Fig. 5. Structure of enable packet.

(bool) (bool)

IM to Drive mode. If an IM must record the output of a
Component that is being tested, the Driver initializes the
IM to Capture mode. If an IM lies in the path between
two or more Components that are being tested together,
the IM may be initialized to either the Pass or Monitor
mode. All other IMs should be initialized to the Isolate
mode to disable all Components that are not being tested.
The Driver must also program the Data Lists for all IMs
that have been initialized to Drive mode.

Following initialization, the Driver sends a packet over
the enable path to trigger a drive operation in every IM
that was set to Drive mode. Each of these IMs then
drives the first input value from its Data List to its
data_out interface. After allowing an appropriate delay
for the design to respond to the test input, the Driver
sends a packet over the enable path to trigger a capture
operation in every IM that was set to either Capture or
Monitor mode. These IMs then record the values at their
data_in interfaces to their Data Lists. The Driver triggers
another drive operation for the next value in the Data List
of each driving IM and a corresponding capture operation
in all of the capturing or monitoring IMs. The
drive/capture sequence is repeated until the Data Lists of
all the driving IMs have been consumed. Finally, the
Monitor reads and reports the contents of the Data Lists
where captured data was stored.

3. Design examples

In order to study the feasibility of using CIM as a
method for verification of SoC designs, we selected two
design examples and deployed our Interface Modules
around them.

3.1 Four-bit adder

We chose a four-bit adder for our first application of

CIM because of its simplicity and easy adaptability to
different levels of design abstraction. The adder module
is depicted in Figure 6. All of the ports on the module
represent individual bits rather than bit vectors. The
adder therefore has nine inputs, four for operand A, four
for operand B and one for the carry in. Similarly, there
are five outputs, four for the sum and one for the carry
out. Thus, the adder requires fourteen IMs to test it.

One important issue to address in developing the CIM
architecture is its scalability in terms of code length and

simulation speed with increasing design complexity. To
explore this issue without having to use multiple designs,
we created several versions of the four-bit adder at
different levels of abstraction. The initial implementation
of the architecture was done around an adder modeled at
a behavioral level with the C++ addition operator. We
then created a Boolean version where we assembled the
four-bit adder out of half adders and full adders. The
operation of each half adder and full adder was defined in
terms of logic equations. Finally, we created a gate-level
model of the four-bit adder where we implemented the
logic equations of the Boolean version using instances of
a NAND-gate module. The three different models,
though they were different in their internal structure, had
the same I/O ports and worked with the same data types.
Therefore, our testbench for the four-bit adder was
directly compatible with all three models.

Table 1 shows the effects of CIM on our design
examples in terms of lines of code and simulation time.
The addition of CIM to our three adder models increased
the line count by 430 in each case. While this almost
doubled the code size of our behavioral adder, the effect
on the Boolean and gate-level versions was somewhat
less pronounced. The behavioral adder increased the
most in code size because it was the simplest of the three
adders to begin with. The simulation time for each type
of adder is the total time required to test all 512 possible
combinations of input values. Again, the behavioral
adder showed the largest increase because of the
simplicity of the original adder code. However, the
Boolean version had the least increase in simulation time,
even though the gate-level adder had the highest original
time.

Four-bit adder

In A

In B

Carry In

Sum

Carry Out

Figure 6. Four-bit adder module.

3.2 Robot controller

Next, we applied CIM to a SystemC model of a simple

robot controller. The model consisted of a controller
module, a read-only memory which programs the
controller, and a monitor which receives signals from the
controller and provides feedback. We deployed a total of
23 Interface Modules along the communication paths
between the three components of the model. Some of the
Interface Modules were bidirectional versions of the IM
described above, enabling us to drive or capture test data
through either data port of the IM.

4. Discussion

Although the four-bit adder example is admittedly

quite simple, it helped us confirm what we believe to be
the advantages of the CIM methodology. Our CIM-based
testbench was directly compatible with adders modeled at
different levels of abstraction, attesting to the reusability
of the CIM architecture. The addition of CIM to our test
environment increased the total code size by a constant
number of lines, regardless of the level of detail in the
design itself. CIM should therefore have a relatively
small impact on the code size of designs that contain
more internal complexity. The simulation overhead of
CIM may seem rather high, but this is only because of the
simplicity of the test case itself. The relative overhead
was much less for our Boolean and gate-level adders than
for behavioral, suggesting that it could be even lower for
a more complex design.

It should be noted that our use of the same design
model at different levels of abstraction was only intended
to test the methodology with varying design complexities.
Our methodology remains targeted at system-level
designs, and our ultimate goal is to create a tool that can
automatically modify such designs to insert the
verification architecture as described in this work.

Automation of our methodology should help to maximize
its efficiency in all respects.

5. Conclusions

The CIM methodology has the potential to enable more

thorough testing of SoC models in the design phase. CIM
allows various parts of a system model to be tested in
isolation from the rest of the model. The methodology is
compatible with designs at several levels of abstraction,
thus providing a reusable testbench structure. The CIM
architecture itself is conceptually straightforward and is
modeled at a high level of abstraction, which simplifies is
operation and reduces its overhead.

6. References

[1] IEEE Standard Test Access Port and Boundary-Scan
Architecture, Std. 1149.1, 2001

[2] T. Grotker et al, SystemC for System Design, Kluwer

Academic Publishers, Boston, 2002.

Table 1. Effects of CIM on design examples.

Lines of code Simulation time (sec) Design
example Original CIM Original CIM
Adder/
behavioral

445 875
(+97%)

0.106 0.159
(+50%)

Adder/
Boolean

531 961
(+81%)

0.1402 0.162
(+15%)

Adder/
gate-level

612 1042
(+70%)

0.203 0.24
(+18%)

Robot
controller

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

