
High Level Metrics for Power Dissipation and Signal
Interference: An Integrated Methodology

Carlos Krieghoff, c.krieghoff@computer.org

Ravi Shankar, ravi@cse.fau.edu

Hari Kalva, hari@cse.fau.edu

John Perret, johnperret@bellsouth.net

Computer Science & Engineering, Florida Atlantic University, Boca Raton, FL

Abstract. High level evaluation of performance, power dissipation, and signal
interference can significantly accelerate real-time embedded system design.
Tradeoffs between software and hardware, architectural variations, and
selection of appropriate application software or of the most effective algorithm,
will be easier. Impact of technology on the product can be assessed early on.
We have integrated, into our modeling and design flow, two recently reported
abstract level methods to estimate power dissipation and cross-talk. This will
allow one to make appropriate design decisions at an early stage. We present
results for two profiles of the MPEG4 Decoder application running on an ARM
processor.

Introduction

High level evaluation of performance, power dissipation, and signal interference
can significantly accelerate real-time embedded system design. There are several
trends that are necessitating this: desire to reduce the time-to-market (TTM),
increasing number of applications and mobile use, and increasing SOC (system-on-a-
chip) design complexity and clock rate. The underlying DSM (deep submicron)
semiconductor technology, while enabling the integration of more powerful systems,
can also lead to poor battery life and quality of service (QOS). However, software-
hardware codesign can provide better functional integration and performance, while
enhancing the battery life and QOS metrics, if such metrics can be incorporated into
the codesign flow.

Estimation of the power dissipation and signal interference at the circuit and VLSI
(very large scale integration) levels can be fairly accurate. The process can, however,
be very slow, especially for software profiling to compare and contrast alternative
algorithms, applications, and architectures. Performance estimation at the
architectural level, using an ISS (Instruction Set Simulator), is both feasible and
reliable [1]. We thus set out to extend the integration at the architectural level to
include the estimation of power dissipation and signal interference. For this, we

Copyright © 2008 Center for Systems Integration, Florida Atlantic University.

2 Carlos Krieghoff, Ravi Shankar, Hari Kalva and John Perret

adapted two recently reported methodologies, used at the RTL (register-transfer
language) level [2, 3], to our architectural level model. Both have been shown to
correlate well with the lower level more detailed models.

Our power dissipation and interference analysis methodology will eventually
permit one to perform what-if scenarios and build a more powerful and intelligent
spreadsheet-like package to determine the overall impact on the system by the suite of
software and applications that are under consideration. Specifically, and more
narrowly, this paper addresses the comparative evaluation of application and other
software, on a virtual model of the actual architecture, but at a high level of
abstraction; hence, rough (or no) estimates of today can be replaced with more
objective measures.

For power monitoring, we analyze the temporal switching activity on a given signal
line. For Interference monitoring, we analyze spatial and simultaneous switching
activity across many adjacent signal lines and used them to measure the effect of
cross-talk.

For our test case, we used an MPEG4 Decoder application and simulated two
different input streams: standard rectangular video and object based video.

Methodology

We present here an integrated methodology based on earlier publications [2, 3]. We
have limited the analysis to bus activity here, but the method can be extended to
include other hardware modules, written in a system language such as SystemC [4].

We used an Instruction Set Simulator (ISS) of the ARM940T [5] processor, which
includes a cache, to generate information profiles for various applications. The figure
below shows how an application is fed to the ARM ISS. The application can be an
ARM image generated by the ARM compiler or the source code. This application is
simulated on the ISS. The simulator generates a trace file with all the bus transactions
performed by the application. The trace file is then examined by the power and
interference analyzers.

For the power dissipation analysis, we calculated the total number of logic
transitions as a measure of the activity factor. We obtain this by adding the transitions
on each of the bus lines [2] for the entire execution of the application. For the
interference monitor, we calculated two glitch and two delay parameters [3]. We
identified each bus line as a potential victim and repeatedly determined a weighted
sum of simultaneous transitions on other bus lines. We incremented appropriate
parameter’s count if the sum exceeded a threshold value. Both these metrics depend
on electrical parameters, such as voltage, capacitance(s), and frequency of operation.
We assumed these as constant since we were interested in relative comparisons only.

High Level Metrics for Power Dissipation and Signal Interference: An Integrated Methodology 3

Application

ARM ISS
Simulator

Power
Analysis

Interference
Analysis

Trace
(Bus transactions)

Executable
or

C/C++
code

Application

ARM ISS
Simulator

Power
Analysis

Interference
Analysis

Trace
(Bus transactions)

Executable
or

C/C++
code

Fig. 1. High Level Power Dissipation and Interference Analysis Flow

1. Power Dissipation Algorithm

As mentioned previously, for power dissipation we analyze the temporal switching
activity on a given signal line. The ISS (ARM emulator) generates the profile
information for the application running on the ARM CPU; this includes all the
instructions that initiate memory transactions. Bus transactions typically account for a
major part of the dynamic power consumption for executing a particular software
application. We thus focused, to begin with, on the bus contribution only.

In order to estimate the power dissipation of a particular application, we developed
an application in C++ that takes the profile information as input and then calculates
the number of bus transactions and the number of transitions on the address bus and
the data bus. Figure 2 shows the actual temporal activity on the lines of the bus. For
instance, compare the activity on the bus at state t+5 against its previous state (t+4);
one notices that there were two transitions: one positive transition (from 0 to 1) and
one negative transition (from 1 to 0). Table 1 shows the results.

Line 1

Line 2

Line 32

Time/State (t), t t+4 t+5

Line 1

Line 2

Line 32

Time/State (t), t t+4 t+5
Fig. 2. Power dissipation calculation

4 Carlos Krieghoff, Ravi Shankar, Hari Kalva and John Perret

2110XOR

100t + 4

010t + 5
Total # of
transitions

Line 32Line 2Line 1

2110XOR

100t + 4

010t + 5
Total # of
transitions

Line 32Line 2Line 1

Table 1. Power Dissipation calculation results

2. Interference Analysis Algorithm

Signal interference can be simply explained as the undesirable effect that one line
carrying electrical signals has on another line running parallel to it, because of its high
activity. The line that causes interference is called the aggressor and the one that is
affected is called the victim.

The probability that a line (the victim) will pick up interference is high when other
lines (aggressors) are running parallel to it and are close to it. The interference can
impact the voltage level and the transition delay. For example, if we have line 1 at
state ‘0’ and there are three other lines 2, 3, and 4, making transition from state ‘0’ to
state ‘1’ then the lines 2, 3, and 4 are potential aggressors and line 1 is a potential
victim, if located physically close to them. The interference in this case is a positive
glitch which can be misinterpreted by down stream logic as a positive transition, if the
interference is high enough.

These are the steps we used to identify possible signal interference:

1. Identify the parallel lines running close to each other
2. Identify the number of lines making similar transitions, i.e. from ‘0’ to ‘1’

and vice versa.
3. If the number of lines making similar transitions is greater than a defined

threshold, they are potential aggressors.
a. If the number of lines making the transition from ‘0’ to ‘1’ is

greater than this threshold, then they are potential aggressors; the
potential victims are the lines carrying a ‘0’ and the lines making
a ‘1’ to ‘0’ transition.

b. If the number of lines making the transition from ‘1’ to ‘0’ is
greater than this threshold, then they are potential aggressors; the
potential victims are the lines carrying a ‘1’ and the lines making a
‘0’ to ‘1’ transition.

4. Assign weights to aggressors and defenders depending upon how close they
are from the potential victim. Defenders are the lines making transitions
opposed to those of the aggressors (This weight assignment can be
improved later with annotation).

a. Aggressors and defenders that are closer to the victim are assigned
higher weights.

b. Add the total weights of the aggressors and subtract the total weight
of defenders for a particular victim.

High Level Metrics for Power Dissipation and Signal Interference: An Integrated Methodology 5

5. If the cumulative aggression score (sum of the weights of the aggressors
minus the sum of the weights of the defenders) for a potential victim is
greater than a threshold value called “Interference Threshold”, then the
probability of it being a victim is extremely high and it is considered as a
victim. The type of interference can be decided as follows:

a. If the aggressors are making ‘0’ to ‘1’ transitions
i. Victims that are making a ‘1’ to ‘0’ transition will get a

positive delay
ii. Victims that are at state ‘0’ will get a positive glitch

b. If the aggressors are making ‘1’ to ‘0’ transitions
i. Victims that are making a ‘0’ to ‘1’ transition will get a

negative delay
ii. Victims that are at state ‘1’ will get a negative glitch

6. Repeat step 4 and 5 for all the probable victims.
See Figure 3 for the different interference effects that can be potentially induced.

Fig. 3. Four different effects induced by cross-coupling capacitances [3]

Figure 4 depicts the method for our signal interference analyzer, with an example.

Fig. 4. Signal interference analysis algorithm

Time=0
Bus Lines

10101010

11101101Time=1
No. of 0 1 transitions = P (3)
No. of 1 0 transitions = N (1)

Is P >=
threshold?

Is N >=
threshold?

For each bit in address line calculate the weight of aggressors
and defenders

0.6.70.80.8Weight

N PP101P1Address

Aggressor = P
Defender = N

Victims = 0s & Ns

Aggressor = N
Defender = p

Victims = 1s & Ps

ΣA

Is (Σ of Aggressors – Σ of
Defenders) > Interference

Threshold?

If Aggressors = P:
0 0 (Positive Glitch)
1 0 (Positive Delay)

If Aggressors = N:
1 0 (Negative Glitch)
1 1 (Negative Delay)

Yes

Yes

Print “No positive
glitch and delay”

Print “No negative
glitch and delay”

No

No

ΣD

Time=0
Bus Lines

10101010

11101101Time=1
No. of 0 1 transitions = P (3)
No. of 1 0 transitions = N (1)

Is P >=
threshold?

Is N >=
threshold?

For each bit in address line calculate the weight of aggressors
and defenders

0.6.70.80.8Weight

N PP101P1Address

Aggressor = P
Defender = N

Victims = 0s & Ns

Aggressor = N
Defender = p

Victims = 1s & Ps

ΣA

Is (Σ of Aggressors – Σ of
Defenders) > Interference

Threshold?

If Aggressors = P:
0 0 (Positive Glitch)
1 0 (Positive Delay)

If Aggressors = N:
1 0 (Negative Glitch)
1 1 (Negative Delay)

Yes

Yes

Print “No positive
glitch and delay”

Print “No negative
glitch and delay”

No

No

ΣD

6 Carlos Krieghoff, Ravi Shankar, Hari Kalva and John Perret

The output of the signal interference analyzer is the number of possible positive
glitches, negative glitches, negative delays, and positive delays for a given
application.

Results

We used the test case of the MPEG4 Decoder for our methodological evaluation.
MPEG-4 video coding is a complex standard with over a dozen profiles and several
levels for each profile. Mobile phones today typically use MPEG-4 Simple Profile
video. Even though the MPEG-4 video decoding algorithms are standardized,
implementations and performance vary from one implementation to another. There is
no objective way to compare and evaluate solutions from different vendors. We have
developed a methodology and a set of metrics to evaluate such applications.

In this project, we first determined and then compared the two metrics (power
dissipation and signal interference) for a rectangular video (Simple Profile) and an
arbitrary shaped object based video (Core Profile) on a given architecture. Instead of
considering two different vendor implementations, we considered two different
MPEG-4 video profiles. Using two different profiles allowed us to examine the core
MPEG-4 functionality and develop representative metrics. Only video decoding was
analyzed. We expect the methodology can be extended to compare and contrast
multimedia and other applications running on a given architectural platform. This is
useful for rapid and objective evaluation of vendor application software for a given
architecture, or vice versa.

The details of the MPEG4 decoder application were as follows: There were 250+
files written in C; the total number of lines of code exceeded 60 K (excluding
comments and blank lines); the input bit streams were encoded either for traditional
rectangular video or low-bandwidth object-based video; the video size was 176 x 144
pixels.

For the rectangular video we used bits streams with the following bit rates: 100
Kbits/sec, 50 Kbits/sec, and 15 Kbits/sec. The resolution of the different bit rates can
be appreciated in the figures below.

Fig. 5. Rectangular video at 100Kbit/sec (left) and 15Kbit.sec (right)

Figure 6 and 7 show the results of the power dissipation and signal interference
analyzers for different standard rectangular video input bit streams.

High Level Metrics for Power Dissipation and Signal Interference: An Integrated Methodology 7

MPEG4 Decoder Power Dissipation
Rectangular Frame

-

500

1,000

1,500

2,000

2,500

3,000

100 K 50 K 15 K

M
ill

io
ns

Bit Rate (bits per frame - 15 frames per second)

Nu
m

be
r

of
 tr

an
si

tio
ns

Fig. 6. Results: power dissipation for rectangular video at different bit rates

MPEG4 Decoder Interference Comparison
Rectangular Frame

-

50

100

150

200

250

Positive Delays Negative Delays Positive Glitches Negative Glitches

M
ill

io
ns

Interference Parameters

Nu
m

be
r

of
 in

te
rfe

re
nc

es

100 K
50 K
15 K

Fig. 7. Results: signal interference for rectangular video at different bit rates

For object-based video we used bits streams with the following bit rates: 60 Kbits/sec,
40 Kbits/sec, and 20 Kbits/sec. The resolution of the different bit rates can be
appreciated in the figures below.

Fig. 8. Object-based video at different bit rates (Left: bit boat and little boat at 60Kbit/sec,
center: big boat at 40Kbit/sec, and right: little boat at 20Kbit/sec)

8 Carlos Krieghoff, Ravi Shankar, Hari Kalva and John Perret

Figure 9 shows the results of the power dissipation analyzer for different object based
video input bit streams.

MPEG4 Decoder - Power Dissipation
Object Based vs. Rectangular Frame

-
500

1,000
1,500
2,000
2,500
3,000

Obj. Based
Big Boat

[40K]

Obj. Based
Little Boat

[20K]

Obj. Based
Big Boat &
Little Boat

[60K]

Rectangular
Frame [15K]

Rectangular
Frame [50K]

Rectangular
Frame
[100K]

M
ill

io
ns

Bitstreams - Bit Rate (bits per frame - 15 frames per second)

Nu
m

be
r o

f T
ra

ns
iti

on
s

Fig. 9. Results: Power Dissipation for object-based video vs. rectangular frame

Figure 10 shows the results of the signal interference analyzer for different standard
object-based video input bit streams.

MPEG4 Decoder - Interference Comparison
Object Based vs. Rectangular Frame

-

50

100

150

200

250

Positive Delays Negative Delays Positive Glitches Negative Glitches

M
ill

io
ns

Interference Parameters

P
os

si
bl

e
nu

m
be

r
of

 G
lit

ch
es

or

 D
el

ay
s

Obj. Based Big Boat [40k] Obj. Based Little Boat [20K]
Obj. Based Big Boat & Little Boat [60K] Rectangular Frame [15K]
Rectangular Frame [50K] Rectangular Frame [100K]

Fig. 10. Results: Signal Interference for rectangular video at different bit rates

As can be seen, the number of positive glitches is about 5 times larger than the
number of negative glitches. To understand this ‘anomaly’, we conducted extensive
experimentation with a sort routine, which also yielded similar results. We were
able to conclude that this results from the relatively high number of zeros (the non-
active state) on the bus lines, a tendency brought about because of the conventional
coding style, locality of code, and lower address ranges; this increased the number of

High Level Metrics for Power Dissipation and Signal Interference: An Integrated Methodology 9

positive glitch transitions occurring on the buses with respect to the other kinds of
transitions.

Discussion

We have developed and integrated abstract level methods for the estimation of
power dissipation and signal interference, so one can perform what-if scenarios at the
software-hardware co-design level, on a relative basis.

For our specific test case, the bandwidth savings due to object based content are
well known [6]; but there is no existing work on the effect of object based coding on
power consumption and interference. Our results show that there is
substantial reduction in both power consumption and interference when object based
video is used, as compared to traditional rectangular video.

Our software profiling methodology can be used for selection (that is, comparative
evaluation) of application and other software for a given architecture. Back
annotation of the electrical parameters (from the VLSI level) and algorithmic
improvements can lead to both better relative and better absolute estimates.

Conclusions

Software performance profiling with an ISS (instruction set simulator) is feasible
today. We extend such an ISS-based methodology for software profiling to include
power dissipation and signal interference, which have become additional critical
parameters because of technological and consumer trends. Comparative vendor
software profiling, for a given architecture, to cover all major electrical parameters
(performance, power, and interference) thus becomes feasible. We present results for
two profiles of the MPEG4 Decoder application running on an ARM processor, which
show that the low bandwidth object-based video is also more power efficient and
more immune to noise, relative to the traditional rectangular video.

Our methodology can be extended to lead to better relative and absolute estimates,
as well as more global estimates, so true software-hardware tradeoffs across different
suites of applications, algorithms, architectures, and implementations can be
undertaken early on in the design. This will enhance design productivity and provide
for more predictable system behavior.

References

1. ARM Ltd.: Software Development Kit Version 2.50 User Guide, Chapter 11: Benchmarking,

Performance Analysis, and Profiling, (1998) 399-426, available at
http://www.arm.com/pdfs/sdt250usrman.pdf

10 Carlos Krieghoff, Ravi Shankar, Hari Kalva and John Perret

2. Mizuno, H., Kobayashi, H., Onoye, T., Shirakawa, I.: Power Estimation at Architecture
Level for Embedded Systems, Proc. IEEE International Symposium on Circuits and Systems
(ISCAS2002) (May 2002) 476--479

3. Bai, X., Dey, S.: High-level Crosstalk Defect Simulation for System-on-Chip Interconnects.
IEEE VLSI Test Symposium (2001) 169-177

4. www.systemc.org
5. www.arm.com
6. Kalva, H.: Designing Object-Based Audio-Visual Content Representation Format for Mobile

Devices, Proceedings of the 47th IEEE International Midwest Symposium on Circuits and
Systems (July 2004) III-479 - III-482.

Acknowledgments

Abhijit Ajmera and Jigisha Goswami developed the early version of this monitor.

