
Leveraging Semantic Web to Retrieve Customized
Medical Information

Sifat Islam
Computer & Electrical Engineering

and Computer Science
Florida Atlantic University

Boca Raton, FL

Glenn Freytag
Shilpico, Inc.

Deerfield Beach, FL

Ravi Shankar
Center for Systems Integration

Florida Atlantic University
Boca Raton, FL

I. INTRODUCTION

We are developing a web based application for use by
diabetes patients to manage their chronic condition. The
application will allow patients to keep abreast of the latest
developments as pertinent to their specific condition (type, risk
factors, medication, history, preferences, etc), interact with
others in a community of users, and have more effective dialog
with their health care providers [1]. This paper will document
our recent developmental efforts to incorporate semantic web
concepts and health IT (information technology) infrastructure.

Recent US Health expenditures reached $2.6 trillion per
year, ten times the amount spent 30 years ago. Longer life
spans and chronic illnesses have contributed to this. Health
care costs for chronic disease treatment account for over 75%
of national health expenditures [2]. The Office of the National
Coordinator for Health Information Technology (ONC) has
identified ‘patient focused health care’ as one of its two major
goals [3]. Cost containment based on prevention and patient-
centric health care management are actively being addressed
today. We focus here specifically on chronic diabetes
management as the vehicle for our web-based system
development project. For a good general discussion and other
Health IT efforts see [2-4].

Web-based tools, especially the interactive ones, have the
potential to improve health outcomes and complement health
care delivery. However, current implementations suffer from
limited effectiveness and usability errors, and consequently
have high user attrition rate [5]. Our App uses open source
tools for software development, semantic web and Health IT
[6-8], so other researchers and entrepreneurs can build on our
work and develop their own creative extensions. We hope this
will help software developers work closely with all the
stakeholders for a given application and find the most optimal
implementation, in terms of usability, content and interactivity.

II. APPROACH

We wish to empower patients by providing them with a tool
to customize their profiles and retrieve pertinent information.
To retrieve relevant medical information from medical
databases and the web, we have leveraged Semantic Web
technology. By capturing the patient’s medical history and
current health conditions in a profile, our application can search

for information specific to the patient’s need. In this paper, we
propose a framework that can be used to build complex
systems to retrieve personalized medical information. The
framework utilizes ontologies, which are graphs of the
relationships between terms that are relevant to a given topic.
Instead of storing patient profiles in a database, our tool will
allow patients to supplement/modify an ontology based on their
information. The benefit of utilizing an ontology is that it is
easy to customize. We will use the APIs (application
programming interfaces) of OWL (Web Ontology Language)
to access the ontology. A semantic reasoner is used to check
the validity and consistency of the ontology after each
modification. To inform patients regarding medical domain
knowledge, our system contains a predefined domain ontology,
which is shown in Figure 1. We want to provide patients with
a tool that can retrieve information not only specific to their
search, but can recommend similar categories to investigate.
We have utilized the Semantic Web Rule Language (SWRL) to
create rules that will suggest medical terminologies that
patients may find useful to explore. SWRL provides our
application with the intelligence required to guide patients in
staying informed with the latest health information. We also
plan to dynamically add rules based on their community’s
interests. Our system will place the patient’s profile in the
context of the medical domain and provide a method to
consider alternative options.

III. CURRENT IMPLEMENTATION

Our current implementation allows the patient to select
search terms from the ontology and the user profile. A Web
Crawler and a set of Web Service Engines then use the terms to
search exhaustively through online databases for any articles
that the patient may find useful. The engines generate search
results, and the application sorts them by relevance to the
patient’s needs, taking the user profile into account. Thus, our
application can obtain valuable results that might otherwise be
missed, discard results which are not relevant, and rank the
results in order of interest to the patient. The application also
integrates the information available in many diverse database
systems in a way that is transparent to the patient. The
application shown in Figure 2 was developed using version
3.7.0 of the free, open-source Eclipse SDK [6] and the
WindowBuilder Pro user interface toolkit [9]. WindowBuilder
Pro generates Java code that contains Swing user interface
components [10]. This code was then merged with lower-level

code that manages the ontology and user profile, performs the
web searches and organizes the search results.

Figure 1. Diabetes Domain Ontology.

Figure 2. Our Semantic Web Application.

In Figure 3 below, we show our code for the
OntologyHandler() methods, where we used OWL API [11] to
interact with our Diabetes_Ontology.owl file. To write this
method, we used code from OWL API’s code examples [12].
In particular, we used OWL API’s Simple Hierarchy code
example to display information about the classes in the
ontology by determining the class hierarchy and traversing the

structure acquired [12]. Note that we have selected the HermiT
OWL Reasoner [13] as our choice of reasoner.

public static void OntologyHandler() throws
MalformedURLException, FileNotFoundException,
OWLException, InstantiationException,
IllegalAccessException, ClassNotFoundException{

final String Ontology = "Diabetes_Ontology.owl";

try { // Create our manager
OWLOntologyManager manager =
OWLManager.createOWLOntologyManager();

File file = new File(Ontology);

OWLOntology localOntology =
manager.loadOntologyFromOntologyDocument(file);

IRI classIRI = null;

String reasonerFactoryClassName =
"org.semanticweb.HermiT.Reasoner$ReasonerFactor
y";

Reasoner hermit =new Reasoner(localOntology);
// System.out.println(hermit.isConsistent());
OWLReasonerFactory reasonerFactory = new
Reasoner.ReasonerFactory();

// Create a new SimpleHierarchy object with the
given reasoner.
SimpleHierarchyExample simpleHierarchy =
new SimpleHierarchyExample(manager,
(OWLReasonerFactory)
Class.forName(reasonerFactoryClassName).newInsta
nce();
// Get Thing
if (classIRI==null) { classIRI =
IRI.create("http://www.semanticweb.org/ontologies/
2011/3/ADA_Dictionary.owl#OWLClassImpl_01326
002017572546000");}

OWLClass clazz =
manager.getOWLDataFactory().getOWLClass(classI
RI);
// Print the hierarchy below thing
simpleHierarchy.printHierarchy(localOntology, clazz

);
}catch (OWLOntologyCreationException e)
{System.out.println("Could not create ontology.");
} catch (OWLOntologyStorageException e)
{System.out.println("Could not save ontology.");
}
}

Figure 3. The Main and OntologyHandler code.

In their paper, The HermiT OWL Reasoner, Ian Horrocks et
al mention that this is the only reasoner that they are aware of
which fully complies with the OWL 2 standard, and that
properly reasons about properties in addition to classes. It is
founded on an innovative hypertableau calculus that fixes
performance issues caused by non-determinism and model
size, which is the key cause of difficulty in OWL reasoners.
HermiT also utilizes few new optimizations, containing an
optimized ontology classification technique. Ian Horrocks et al
found that HermiT does well in contrast to available tableau
reasoners and is usually significantly faster when classifying
intricate ontologies [14].

One cannot describe all relations using the OWL 2
language. For example, OWL 2 cannot describe the relation
child of married parents. The reason for this limitation is that
this language is unable to describe relations between people
with whom a person has relations. This limitation of OWL can
be overcome by incorporating SWRL rules to ontology. In
Protégé’s OWL editor, one can add SWRL rules and
furthermore, the HermiT reasoner works with SWRL rules.
Utilizing SWRL, one can describe the child of married parents
relation. But using random SWRL rules will cause
uncertainty; therefore DL-safe rules are coded in reasoners.
DL-safe rules are used just for named individuals rather than
individuals that are unnamed but nevertheless recognized to
exist [15].

IV. DISCUSSION

We are developing a framework which incorporates
Semantic Web technology, web services, and web crawler for a
user-friendly, interactive, and up-to-date Health IT application.
A recent systematic review of web-accessible tools for
management of diabetes [5] found that few web-based tools
met all their health outcome criteria for clinical effectiveness,
clinical usefulness, sustainability, and usability. They also
found that greater interactivity resulted in better health
outcomes. However, greater interactivity may require higher
levels of health literacy, navigation skills ̧ and computer
experience. The authors conclude that strategies are needed to
minimize website attrition (that occurs with static web sites and
even interactive sites that are not easy to navigate). They wish
to facilitate this by enabling patients and clinicians to make
informed decisions about website choice with a standardized
set of website quality indicators. They also indicate that with
careful user testing, highly interactive applications can be
designed to be user friendly. We propose that an open source
application development environment, such as ours, allows
such user testing, incremental improvement, and customization
in terms of the stakeholder comfort level, content needs ̧ and
objectives for their usage.

In terms of the technological aspects, we have created so far
a diabetes ontology and utilized OWL API to load the ontology
in our application. We will then utilize a semantic reasoner via
OWL API to check for validity and consistency of patient
ontologies as they modify their ontology with our application.

In addition, we will utilize SWRL to create rules to suggest
related search terms. We expect to integrate SWRL rules and
demonstrate at the conference a functioning system that
addresses these issues.

At present, our app shown in Figure 3 provides each user
the latest research articles; this will be extended to include
articles from reliable clinical sources, and a rank listing of the
latest articles read by their disease-centric community. Later,
we plan to incorporate more avenues to facilitate direct
interaction among patients, and formation of physician-
centered groups of patients, to support each other and learn
from each other.

The Indivo open source framework [8] will be used to store
and maintain patient databases, and our extensions that embed
their preferences. In development for about five years so far,
Indivo [8] is now in its version 2.0.0 and is a free/open-source
Personally Controlled Health Record server developed by the
Children's Hospital in Boston, MA [17]. Medical information
is stored as Python objects. The Indivo APIs provide a flexible
way to aggregate a longitudinal health record from various
component data sources, and to provide the ability to share
components of an aggregated record with third parties [16].
This allows our tool to be customized to the individual user
using his/her own health records and for a community site to
be developed.

Other researchers have efforts underway to integrate
Indivo with other tools. ONC (the Office of the National
Coordinator for Health Care Technology) [18] has funded the
Substitutable Medical Apps Reusable Technologies (SMART)
project, and its extension, the SMART-enabled i2b2 platform
[19] so that substitutable SMART applications (apps) can
interact with health data within i2b2 (Informatics for
Integrating Biology and the Bedside) [20]. The i2b2 Center
plans to provide a scalable informatics framework that will
enable clinical researchers to use existing clinical data for
discovery research, [20]. Our extension may be considered a
health data analytics application with a user customizable
interface.

V. CONCLUSIONS

Management of a chronic disease, such as diabetes, is
influenced by latest research findings and disease-centric
community interaction, which can augment the private
interaction between the patient and his/her physician. We wish
to provide such a web-based tool. We expect to demonstrate
our evolving tool at the conference. Other researchers have
shown that an interactive, personalized and user-friendly web
application may reduce user attrition rate and improve health
outcomes. Our web application based on open source tools
will allow other software developers and medical researchers to
explore ways to improve the patient’s web experience. This
has potential to improve health outcomes and reduce health
care cost.

REFERENCES

[1] S. Islam, G. Freytag, and R. Shankar, “Intelligent Health Information
System to Empower Patients with Chronic Diseases”, IEEE IRI 2012,
August 8-10, 2012, Las Vegas, Nevada, USA.

[2] Kaiser: US Health Care Costs, http://www.kaiseredu.org/issue-
modules/us-health-care-costs/background-brief.aspx2012.

[3] Christensen, C.M., The Innovators’ Prescription, McGraw Hill, New
York, 2009

[4] Wager, K.A., Lee, F.W., and Glaser J.P., Health Care Information
Systems, 2nd Edition, Jossey-Bass, Wiley, 2009.

[5] Yu, C.H., Bahniwal, R., Laupacis, A., Leung, E., Orr, M.S., and Straus,
S.E., Systematic Review and evaluation of web-accessible tools for
management fo diabetes and related cardiovascular risk factors by
patients and healtcare providers, J. Am Med Inform Assoc., Vol. 19,
Issue 4, pp. 514-522, July 2012.

[6] Eclipse IDE for Java Developers, 2012,
http://www.eclipse.org/downloads/packages/eclipse-ide-java-
developers/junosr1

[7] M. Horridge, “A Practical Guide To Building OWL Ontologies Using
Protege 4 and CO-ODE Tools Edition 1.3,” The University Of
Manchester, March 2011.

[8] Indivo: The Personally Controlled Health Record,
http://indivohealth.org/

[9] WindowBuilder User Guide - Java Developer Tools – Google
Developers, 2012, https://developers.google.com/java-dev-tools/wbpro/

[10] Trail: Creating a GUI with JFC/Swing, 2012,
http://docs.oracle.com/javase/tutorial/uiswing/index.html.

[11] OWL API, 2012, http://owlapi.sourceforge.net/documentation.html.
[12] Documentation – Code Examples, 2012,

http://owlapi.sourceforge.net/documentation.html.
[13] Hermit OWL Reasoner, 2012, http://hermit-reasoner.com.

[14] I. Horrocks, B. Motik, and Z. Wang, “The HermiT OWL Reasoner”,
Proceedings of the 1st International Workshop on OWL Reasoner
Evaluation (ORE-2012), Manchester, UK, July 1st, 2012.

[15] OWL 2 and SWRL Tutorial, 2012, http://dior.ics.muni.cz/~makub/owl/
[16] Mandl, K.D., Simons, W.W., Crawford, W. CR, and Abbett, J.M.,

Indivo: : A personally controlled health record for health information
exchange and communication, BMC Medical Informatics and Decision
Making, September 12, 2007, pp. 25-34

[17] Indivo Wiki,
http://wiki.chip.org/indivo/index.php/HOWTO:_write_an_Indivo_app_u
sing_Python, retrieved on November 10, 2012

[18] ONC website:
http://healthit.hhs.gov/portal/server.pt/community/healthit_hhs_gov__ho
me/1204, retrieved on November 10, 2012

[19] SMART i2b2 wiki site:
https://community.i2b2.org/wiki/display/SMArt/SMART+i2b2,
retrieved on November 10, 2012

[20] i2b2 site: https://www.i2b2.org/, retrieved on Novemer 10, 2012

