HARDWARE IMPLEMENTATION OF LEARNING NEURAL NETWORKS
E. E. Pesulima, A. 8. Pandya and R. Shankar

Department of Computer Engineering
Florida Atlantic University
Boca Raton, Florida 33431

Abstract:

Various issues connected to the parallel hardware implementation of neural
network (NN) computational paradigms are addressed. Inspite of a flurry of
interest in NN, not much has been done to implement NNs with learning capability
in hardware. Most of the hardware implementations still rely on software
simulations of the learning algorithm. A comparative discussion of the two major
contending implementation mediums, analog and digital VLSI, is carried out.
Posgible system architectures are also discussed. The computational burden
required by the NN algorithm would consist of not only the burden placed by an
operating NN but also the burden placed by learning algorithms that could be
used to train the NN. The hardware implementation of the backpropagation
learning algorithm is used as a case example to illustrate the choices a designer
must make in trying to implement neural network paradigms in hardware.
Simulation results are also discussed.

1. Introducton.

The past decade has seen a tremendous surge of interest in the Neural
Network (NN) computational paradigm. The failure of conventional computational
paradigms based on the sequential digital computer to solve some of the most basic
problems that biological systems routinely solve with ease have prompted the
search for biclogically inspired paradigms. The great interest in NNs has
resulted in a large number of publications that deal with numerous NN models and
algorithms and various issues related to the implementation and application of
NNs. The main feature of the NN paradigm is the distributed nature of the
computation. This is evidenced by the presence of a large number of simple
computational units (neurons) that are usually connected to many other similar
units. The viability of NNs as a vehicle to be used in the solution of many
important practical problems have been established. Most NNs are implemented in
software simulations. While simulations are useful in exploring various
possibilities, they are unrealistic for most practical applications because
implementing an intrinsically parallel process on a sequential computer greatly
underutilizes the potential of NNs. A parallel hardware implementation is
imperative for two main reasons: the application of NNs to practical problems and
the study of the NN paradigms at a massive scale comparable to that of biological

NNs.

There are several different mediums for hardware implementation. VLSI
implementation is the most promising in the immediate future while other, more
exotic mediums such as optical implementations are more promising in the long

Copyright © 2008 Center for Systems Integration, Florida Atlantic University.

rsosa2
Copyright © 2008 Center for Systems Integration, Florida Atlantic University.

term. Two possibilities exist for VLSI implementations, analog and digital VLSI
realizations. Bach of these possgibilities has strengths and weaknesses. Once the
medium is determined, the detailed implementation choices of wvarious system
components could be made. Besides choosing an implementation medium, one has
to determine the system architecture. A significant degree of parallelism is
necessary to effectively utilize the potential of NN computing. Additional
computational burden arises if the learning algorithin is to be implemented in
hardware as well. We will discuss these issues and present a case example of the
hardware implementation of a NN paradigm, the backpropagation learning
algorithm, that will illustrate the choices ons must make in implementing NN in
parsallel hardware.

2. Analog Vs. Digital VI.5I Implementation.

Speed and Size. The two major considerations in any hardware implementation
are the speed and size of the various components. Hopfield has recently shown
[HOPF90] that analog implementations of NNs do not have an advantage in terms
of speed over digital implementations. However, analog realizations have a
significant size advantage. A glaring exception observed by Hopfield is in the
generation of the sigmoidal transfer function of the neurons. Analog hardware
could naturally generate a sigmoidal function such as tanh{x), resulting in a fast
and area efficient implementation of the function, whereas the same function is
usually implemented with a cumbersome, large look up table in digital hardware
(we will be discussing possible digital solutions shortly). Thus an analog
implementation is much more effective if the nature of the circuit is utilized
[HOPF90]. This "Neuromorphic" approach to designing NNs, that of using
circuit analogs of the "computational primitives” of NNs by taking advantage of
the underlying device physics as opposed to a straightforward analog approach of
simply trying to build analog circuits that implement various NN compconents has
been developed and used effectively by Mead [MEADS89]. It is especially effective
in certain special NN paradigms with characteristics that could be exploited by
ahalog implementations e.g. the silicon retina [MEADS88] and the electronic
cochlea [LYONB8].

Communication Requirements. A major part of the structure of NNs is concerned
with the connection elements (synapses) between different neurons. The amount
of interconnections necessitates time multiplexing of interconnections.
Multiplexing analog signals is more difficult than multiplexing digital signals
where the technique is commonly used. Sizable NN systems would have to reside
in multiple chips. Communicating analog signals between chips is very difficult
and is likely to result in a significant degradation of the signals; no such problem
exist with digital signals. Thus the communication between various components in
hardware would probably have to be realized using digital hardware.

Precision. The necessary degree of precision required by the NN paradigm is
important in determining the medium of implementation. Analog implementations
are only capable of limited precision while digital implementations are capable of
very high precision. Many of the presently popular NN learning algorithms hased
on gradient descent methods e.g. backpropagation require a significant degree of
precision making an analog implementation of these algorithms very difficult if not
impossible [HOPF30][BAIL90]. This is in contrast to biclogical systems that solve
the same problems with much lower precision, comparable to that of analog

hardware. 'The solution would be to find new algorithms capable of working with
very limited precision [HOPF90].

Stability. Another important consideration is the stability of the hardware
implementation. The computational process of NNs is evidently nonlinear in
nature. Digital systems require the time sampling of the input from its
environment. Sampling should be done at a minimum rate of twice the maximum
frequency component of the input. Nonlinear systems could introduce frequency
components much higher than those in the inputs. This could introduce
instabilities in the system [FAGGS0]. This problem does not exist in continuous
analog systems. This could be a fatal flaw in future digital implementations in
light of wvarious evidences of nonlinear processing in biological systems.
Properties of nonlinear systems such as the possibility of stable states
characterized by complex attractors such as limit cycles and even chaotic
attractors may be essential to the operation of biclegical nervous systems
[YAOS0][SKARS7][HARTS83]. Further understanding of biological systems will
result in future artificial NNs that may possess many of the characteristics of
biological NNs such as complex nonlinear dynamics, including chaotic dynamics.
The deficiency of digital systems in behaving as nonlinear systems would
probably preclude the implementation of these future NN systems in digital
hardware.

Flexibility. The flexibility of the hardware realization is an additional concern to
be addressed in choosing the appropriate medium. The degree of flexibility
needed depends on the kind of hardware implementation we want: general purpose
or dedicated NNs. If the particular algorithm and interconnection pattern is
known then a dedicated hardware implementation would be in order. The higher
flexibility of general purpose NNs would require some programmability that is
possible only with digital hardware. A significant degree of flexibility is also
necessary to implement various NN learning algorithms in hardware. This would
usually require the modification of synaptic weight values. Here again digital
realizations have an advantage since digital weight values residing in memory
elements would be easier to change compared to analog weight values usually
stored in the form of a charge value of circuit elements.

Additional considerations exist in determining the implementation medium of
NNs. Digital VLSI technology is a mature technology. Supporting design aids as
well as manufacturing facilities are already in place for digital VLSI technology.
Digital! implementations are also compatible with existing computational hardware
which is an advantage in the effort to incorporate NN technology as part of the
array of possible choices one has in solving various computational problems
[HECHS8]. Analog VLSI technolegy, on the other hand, is still evolving. We are
still learning to utilize the inherent nature of analog computing in designing
hardware based NN systems. As we learn more, analog VLSI would certainly
become an increasingly attractive choice for a hardware implementation medium of
artificial NNs.

In summary, the analog nature of NNs suggest that preference should be
given to analog implementations whenever possible. However, there are certain
tasks in which digital implementations have a distinct advantage such as in
realizing the multiplexing of interconnection signals. Precision and flexibility
requirements may also necessitate the choice of digital hardware realizations. A
compromise approach to this situation is to use a hybrid analog/digital hardware
implementation. In this strategy, analog realizations are used wherever it is

applicable and digital realizations are used only where it is necessary. This
strategy has already been successfully used by several groups e.qg. [GRAF88],
[AKER90], [AGBAS90].

3. System Architecture Considerations.

NN paradigms rely on massive parallelism to deliver their computational
power. Thus any hardware realization of NNs would have to address this issue.
The question of the appropriate system architecture to use in implementing NN in
hardware is still an unsettled, evolving question. Numerous proposals have been
forwarded on possible system architectures.

The computation done by NNs are concentrated at two major NN elements,
the neurons and the synapses joining them. Maximum parallelism could be
achieved by assigning separate processors to the neurons and to the synapses.
The Neural Elements (NEs) and Synaptic Elements (SEs) would then be
interconnected through communication lines. The total computational tasks
required by the NN algorithm could then be divided between the NEs and the SEs.
This computational burden would consist of not only the burden placed by an
operating NN but the burden placed by learning algorithms that could be used to
train the NN. If such a strategy is pursued, it is crucial to shift as much
computational burden as possible to the NEs while keeping the SEs as simple as
possible. This is motivated by the fact that there are usually many more
synapses than neurons in a typical NN. This method has been used in some
implementations, e.g. [FUJI90]. If the burden placed by the massive parallelism
is too great for this approach, the functions of both the NEs and SEs could be
done by a single Processor Element (PE}. This would decrease the degree of
parallelism and slow the computation somewhat but could result in a significant
saving in silicon real estate,

The massive parallelism required would probably make it impossible to map
each network element to a PE. Some amount of virtualization is necessary. The
degree of multiplexing chosen could fall anywhere within the range of possible
degree of multiplexing or "virtualization granularity" [BAILS0]. At one extreme
the whole neural network could be mapped to a single processor as would be the
case in simulations done on a conventional computer, while at the other extreme
each network element could be mapped to an unique PE.

The interconnection demands of practical implementations of some NNs
could still be too great for a straightforward hardware implementation. Therefore
emphasis should be placed on NN structures that are amenable to hardware
implementations. NN structures with a high degree of locality in their
connections are examples of this. Included in this class of NNs are strictly
layered NNs [AKER90], and NNs that emulate certain biological NN structures
that have considerable locality in their interconnection, e.g. NNs in the sensory
systems [FAGG90] and other structures like certain parts of the cortex
[BAILS0].

In situations where the density of the interconnections is nonhomogeneous,
different strategies have been suggested to implement the interconnections.
Dense connections could be implemented using broadcast method while sparse
connections could be implemented using direct point to point connections

[BAIL90]. The density of the temporal activity of various elements in the NN is
also important in determining the performance of the hardware implementation.
Muitiplexing various computational elements as well as communication lines would
not result in a significant degradation of speed if the temporal activity is sparse
{(HAMM90]. Unfortunately this is not the case in many currently popular
algorithms such as backpropagation.

It must be emphasized that practical hardware implementation of NNs could
only be realized if a system perspective is faithfully followed throughout the
design process [HAMM90]. This means that a careful choice of the particular NN
model to be implemented must be made by considering the characteristics that
might make the system architecture simpler. Various techniques used in
implementing other conventional complex systems should also be used in designing
the systeni architecture of NNs, e.g. bit serial techniques could be used to
reduce the demand for communication lines. The design methodology used in
conventional VLSI hardware design should also be followed. The hierarchical,
top~down methodology and the modularization of NN system structure into
subnetworks are examples of design methodologies that should prove useful in
crafting the optimum system architecture for NNs. Various conventional
interconnection methods such as meshes, systolic arrays, hypercubes, etc.
should be considered in choosing the appropriate realization of NN
interconnections. Considerable effort should be made to match the
interconnection needs of the particular NN model to the chosen interconnection
method.

4. The Backpropagation Algorithm: A Case of Hardware Implementation.

One of the most important recent advances in the field of neural networks is
the development of effective learning algorithms for neural networks. The most
popular learning algorithm today is the Backpropagation algorithm for
feedforward neursal networks [RUMES86]. Inspite of a flurry of interest in the
algorithm, not much has been done to implement the algorithm in hardware. Most
realizations of the algorithm are done in software simulations. Although software
simulations serve a useful purpose in exploring the application of the algorithm to
various problems, it represents an underutilization of the true potential of neural
networks by simulating what is inherently a parallel process in a sequential
machine. We will now describe a possible implementation of the backpropagation
algorithm as a case example illustrating the choices a des1gner must make in
realizing the algorithm in parallel VLSI hardware.

The precision and flexibility requirements of the backpropagation algorithm
makes an analog VLSI implementation quite difficult. Thus the first choice we
make is to use digital VLSI as the implementation medium. The use of hardware to
realize backpropagation has been mostly in the form of Add-on floating point
accelerator boards. Most of the work done to date concerns only the
implementation of a working multilayer feedforward perceptron NN in hardware.
The backpropagation algorithm needed to train this NN has not been implemented
in hardware. A major aim of past work is to explore the effects of weight
discretization on the algorithm. Weight discretization is an important
consideration in dealing with the 1limited precision of possible analog
implementations [SHOE90] or the simplification of digital implementation of the NN
model [MARC90]. In both cases weight discretization is done in software

simulation using floating point arithmetic. It usually involves rounding the
weight values after learning is accomplished [MARC90] or allowing only coarse
stepsizes in the weight changes during learning [SHOE90]. Thus, there has
been no actual realization of the backpropagation algorithm in analog hardware;
proposals have been made to realize the algorithm in analog hardware but these
proposals are usually made on the basis of software simulations of analog NNs
[cAVI90], [SHOES0]. Simulations cannot perfectly emulate the actual analog
hardware because of wvariations in the actual circuits, thus whether these
proposals could actually work remains to be seen. This is not the case with
digital hardware where simulations could perfectly emulate the actual hardware.
A major obstacle to analog realizations is the flexibility requirement in weight
storage. Possible solutions are still being researched; one possibility is a
"programmable resistive memoxry" [EBER90].

Presently available digital hardware realization of backpropagation is in
floating point arithmetic. Only more recently has it been recognized that the
algorithm couwld and should be implemented in integer arithmetic. This
implementation would make the learning process much faster and decrease the cost
of possible hardware implementations. Such simplifications in hardware
components are absolutely essential in order to implement the neural network and
the learning algorithm in a massively parallel hardware realization. We chose to
realize the algorithm exclusively in integer arithmetic. Using integer arithmetic
results in a reduction of the precision of the realization, but the degree of
precision could be wvaried according to the requirement of the particular
application. Before continuing the discussion on the possible hardware
implementation of the backpropagation algorithm, a brief description of the
version of the algorithm that we used follows.

Consider a multilayer feedforward NN as in figure 1. If neuron "i" is in
one layer of the neural network while neuron "j" is in the layer immediately above
it. The following relations hold:

Input of unit j (I,):

I, = Wy - By (1)
i

Where W,, is the weight between unit i and unit j and B, is the threshold or bias of
unit i.

COutput of unit j (0;):
0, = £(I;) (2)

Where f() is the transfer function of the neuron, which in this case is the
sigmoidal function. The learning procedure will proceed by changing the weight
value by DelW,y according to the following rule:

DelW,; (n+l} = n(6;0:) + aDelW,(n) (3)

where n is the learning rate, a is the momentum rate and &, is the error signal for
unit j. The bias of the unit is modified in a similar way, but 0, is always 1, thus:

DelB; (n+l) = n& + aDelB (n) (4)

The error signal of unit j depends on which layer of the network the unit isin. If
unit j is in the output layer then:

& = (Ty -Q) (L) (5)

where T, is the targeted or desired output value for unit j and f£*{ } is the
derivative of the sigmoidal function. On the other hand, if unit j is in the hidden
layer then:

& = f’(L)}zi & Wi (6)

where unit k is in the layer above the layer unit j is in.

The particular version of the learning algorithm used in our simulations is a
modified version of the original algorithm [RUMES86]. These modifications make
the algorithm faster [VOGL88]. The changes included:

1. The weight changes are not made until all patterns in the training set were
presented. The changes for each pattern are accumulated and applied only after
all the patterns were presented.

2. If the error rate increased above a certain percentage over the past iteration
(say 5% to 10%), the last weight change is canceled, the learning rate n is
multiplied by a constant smaller than 1 (thereby decreasing it) and the momentum
rate set to zero.

3. If the error rate decreased the learning rate n is multiplied by a constant
larger than 1 (thereby increasing it) and the momentum rate is set back up to its

initial value.

4.1 Implementation Issues.

Size and speed considerations are paramount in the design of various
network components to be used in hardware. The size of components are
particularly important in determining the degree of parallelism possible in
hardware. One important step in approaching a fully parallel implementation of
the neural network is a simple, area efficient implementation of the sigmoidal
function, where analog implementations have a significant advantage over digital
implementations [HOPF90]. This is true because, to date, the only method of
generating a good sigmoidal function in digital hardware has been through the
use of a very sizable look up table. It is thus fundamentally important to devise a
simple way of generating the sigmoid function in digital hardware. In our
simulations, the "Binary" sigmoid, proposed by us earlier, was used. This new
sigmoid was proposed with a simple digital hardware implementation in mind, see
[PESU90a] and [PESU90b] for a more extensive discussion. BY taking advantage
of the binary nature of digital hardware the realization of this new sigmoid is
significantly simplified. The use of this sigmoid allows for a very small look up
table to approximate the function in hardware. The expression for the sigmoid
is: ' :

217 /2 X £ 0
£(x) = (7)
1-271/2 x >0

where x is the input to the function and g is the gain of the sigmeid. Using Eq.
(2) we have for the derivative of the function:

g*log.2 f{x) x <0
o (x}) = (8)
g*log.2(1 - £(x)) x >0

The calculation of the derivative is of the same complexity as that for the
conventional logistic sigmoidal function:

£ (x) = g*{x}{1-£x)) (9)

used in the original backpropagation algorithm [RUME86]. We believe that the
use of the binary sigmoid would considerably close the gap of advantage that
analog realizations have over digital realizations, thus making the realization of
backpropagation in parallel digital hardware much more feasible.

Another important issue that has to be considered is the size of the
register/memory element needed to represent the values of the neuronal outputs
and the weights of the network. The size of the representation will determine the
size of neuronal elements and weight elements in the silicon real estate. The size
of connection lines between the weights and neurons and various computational
elements such as adders and multipliers will also be determined by the size of the
output and the weight elements. Minimal size elements are imperative in order to
realize a sizable neural network in hardware as they would decrease the need for
virtual processing and allow for a truly parallel realization of the network.
Choosing the number of bits to represent the output is basically equivalent to
choosing the level of approximation of the ideal output. The ideal output range is
from O to 1. Using a 6 bit representation of the output would give a range of
value of 0 to 63 to represent the actual output range of 0 to 1. This amounts to an
accuracy or resolution of 1/64. The weight resolutions are chosen similarly. If
the weight resolution is 512 then an integer value of 512 would represent an actual
weight value of 1. This would allow a smallest approximation of 1/512 for the
weight values. Since weight values can take negative values and have
magnitudes larger than one, we need extra bits to represent the integer part of
the weight and one sign bit. The actual weight values chosen by the algorithm
after learning is usually below a certain relatively low value. Our simulations
show that for the XOR and 4-2-4 decoder problems the magnitude of the weight
values usually fall below 5, thus needing only 2 extra bits. Choosing an output
and a weight resolution value allows the approximation of real/floating point
numbers in integers. Thus the whole algorithm could be carried out in integer
arithmetic, thereby significantly simplifying the computational elements. By
choosing resolution values that are powers of 2 (16, 32, 64, etc.)} we could reduce
the often occurring operation of dividing and multiplying by resolution values to
an appropriate shifting operation. The resolution values would thus determine
the complexity of various components and the size of the communication lines
needed. Higher resolution values result in better performance and higher
complexity and the opposite is true for lower resolution values. Thus the familiar
engineering tradeoffs exist between cost and performance. The ideal sclution
would be to use the minimal resolution that would still guarantee acceptable

performance.

4.2 Simulation Results.

Simulations were carried out to determine conditions under which the
digital implementations would perform well. The XOR (using a 2-2-1 network)
and 4-2-4 Decoder problems were used, both problems have been used often as
benchmarks in various neural network publications. Extensive simulations were
performed using different combinations of Output Resolution (0.) and Weight
Resolution (W,) values. We used Q. values of 16, 32 and 64 while the W, values
were varied from 16 to 512 {in powers of 2). The main goal was to establish the
minimal resolution (or precision) necessary to guarantee good performance (in
terms of valid convergence rates). The results are shown in Table 1 for the XOR
problem and Table 2 for the 4-2-4 decoder problem and could be summarized as
follows:

1. For the XOR problem high convergence rates were obtained for a minimal ©,
values of 32 and W, value 64.

2. For the 4-2-4 Decoder problem high convergence rates were obtained for a
minimal O, value of 16 and a W, value of 128, and an O, of 64 with a Wy of 64.

For resolution values higher than the minimal ones, the performance is better.
On the cother hand, for lower resolution values, the performance is worse,
convergence rates decrease although valid convergences are still possible. The
performance progressively improves with higher resolution wvalues, this is
reflected in the convergence rates and generally in the final error rates reached
by the algorithm. Although acceptable convergence rates are possible at the
minimal resolution wvalues, lower weight resolution wvalues result in greater
sensitivity to gain values. Thus, weight resolution values that are higher than
the minimal values are required to make the learning robust with respect to gain
values. Figures 2, 3, and 4 show the evolution of n and error values, bias
values, and weight values respectively of a typical 2-2-1 network, with O, of 64
and W, of 128, that is learning the XOR problem. A detailed discussion of the
simulations is given in [PESU90a]. We remark here that the weight discretization
method mentioned earlier with respect to analog implementation of
backpropagation would correspond to an infinite O, and a finite, relatively small
Wx. In one particular case [CAVI90], a minimum 24 levels of weight values were
suggested. Such low W,, shown to be adequate by simulations, were possible
only because of the infinite precision of the output.

The actual weight values for networks that have learned the XOR problem
average around 1.5 while the actual value of biases average around 1. A network
with a weight resolution of 512 the average weight value in integer would be about
1.5 multiplied by 512 or about 770. Another network with a different weight
resolution, say 64, would have an average integer weight value of about 1.5 X 64
or about 96. Thus lower weight resolutions result in lower integer weight values,
which would translate into fewer bits needed to store the weight wvalues.
However, using lower resolution values decreases the convergence rate. While
for higher output resolution, higher convergence rates are possible with the same
weight resolution. Thus, for example, if a weight resclution of 64 is used, a
higher convergence rate is pogsible if output resolution is 64 versus 16. Thus by
increasing the output resolution one can decrease the weight resolution to a
certain extent. But increasing either output or weight resolution would result in
a more complex hardware realization. Thus one of the major tradeoffs that one
must make is that between the output and weight resolution values. A compromise

value for both resolutions, one that avoids extreme wvalues for either one, is
probably in order.

4.3 Computational Requirements.

From the description of the algorithm we can see that there are two major
arithmetic operations needed, multiplications and additions. An additional
computational burden is the generation of the sigmoidal function. Since the
generation of the binary sigmoid could be accomplished by a very small look up
table the speed of the generation would be very fast. Since we are using integer
arithmetic operations exclusively, the multiplier and adder used are also much
simpler compared to previous implementations using floating point arithmetic.
The size of the multiplier and adder used would depend on the output and weight
resolutions used. As an example, we use resolution values of 64 for both O, and
W.. The equal O, and W values means that the number of bit lines needed to
carry neurcnal output and input values will not differ much. The number of bits
needed to represent the output and the weight resolution value is 6 bits. If, as
discussed before, the maximum weight value is less than 5 then 2 more bits are
needed, giving a total of 8 bits necessary to represent the weights, excluding the
sign bit. Thus the multiplier and adder must be able to handle 8 bit inputs. The
summation in equations (1) and (6) could result in a large value to be handled by
the adder. Exceedingly large value in equation (1) should result in the
saturation of the sigmoid function in equation (2} and is not likely to occur in
equation (6). Multiplying two 8 bit numbers results in a 16 bit number, 12 of
which are fractional bits. However the output of the multiplier has the same
resolution value as the weights thus the output of the multiplier should be shifted
right by 6 bits (to change the fractional bits back to the Wi of 6 bits). In our
simulations the various arithmetic operations produce results with a resolution
value that is the same as W.. Thus reducing W. could reduce the size of the
multipliers and adders. Increasing the O, would allow a lower W, for the same
performance. This should be considered in the design process.

4.4 Mapping the Algorithm to the System Architecture.

After we have determined the network components required by the
algorithm, the next step is to map the different functions of the algorithm onto
the system architecture. If we decide to assign separate processors, the NEs and
SEs, for the functions of the neurons and synapses, we will have to divide the
computational burden to the NEs and SEs. An optimum division of tasks between
NEs and SEs is as follows:

NEs:

- Equation (1) the summation part and the subtraction of the bias
- Equation (2)

- Equation (3) only the multiplication of eta and delta (5,)

- Equation (4)

-~ Equation (5)

- Equation (6) the summation and multiplication by derivative

SEs:
- Equation (1) the multiplication part (W;;0.)
-~ Equation (3) the rest of the equation

- Equation (6) the multiplication of delta and the weight (6.W,)

The above division is made such that much of the computational burden is shifted
to the NEs resulting in the simplest possible SEs, since there are usually many
more synapses than neurons in a typical neural network. The required
computational components in each NE and SE would be a multiplier and an adder;
in addition, each NE would have a sigmoidal function generator. Memory elements
required to store appropriate values must also be included in the NEs and SEs.
The communication requirements between layers of NEs and SEs in a multilayer
network is as shown in Figure 5. Assuming a strictly feedforward network the
structure will consist of interleaving layers of NEs and SEs.

If implementing separate processors gets too complex then we could use
only a single processor, the PE. In which case each PE would contain the
required computational components (multipliers, adders and sigmoidal function
generator) and the memory elements needed to store the output, bias and weight
values along with some other constants like a. The communication requirements
between two adjacent layers of PEs are shown in Figure 6.

Multiplexing of PEs could further reduce complexity and size. In the case
of layered NNs, each layer of neurons could be mapped to a single PE or, for
layers with many neurons, several PEs could handle the computation of a single
layer of neurcns. A similar strategy could also be used for the case where there
are separate processors, NE and SE. ©Other types of interconnection methods
could also be used in connaecting the PEs. An example is the use of ring systolic
array as the system architecture that could implement the backpropagation

algorithm [KUNG89].

5. Conclusion.

We have discussed different issues involved in the hardware implementation
of NNs with learning capability. The choice of an implementation medium is
greatly influenced by the algorithm used. Analog VLSI could be used to realize a
set of NN models that could take advantage of the device physics of analog
circuits and only require a low degree of precision. Digital VLSI remains the only
medium available for NN models requiring a high degree of precision and
flexibility. Unfortunately this includes most of the learning algorithms known
today. Further work is needed tc uncover more biologically attuned learning
algorithms that could function with very low precision.

Results of computer simulations of a digital realization of the
backpropagation algorithm are discussed for two specific problems, i.e. XOR and
4~2-4 decoder problems. Based on these simulations we have obtained minimum
size and maximum speed for the wvarious computing elements. The optimum
realization is based on the use of integer arithmetic and the simplification of the

sigmoidal function generator.

6. References.

[AGBA9S0] L. C. Agba, M. Berthin, F. Miro, and R. Shankar, "A General
Purpose Analog Neural Network Implementation," 2nd. Annual Florida
Microelectronics Conference, 1990, 63-66.

[AKER90] L. A. Akers, D. K. Ferry, and R. O. Grondin, "Synthetic Neural
Systems in VLSI," in An Introduction to Neural and Electronic Networks, S. F.
Zornetzer, J. L. Davis and C. Lau Eds., Academic Press, San Diego, CA, 1990.

[BAIL90] J. Bailey, D. Hammerstrom, J. Mates and M. Rudnick, "Silicon
Association Cortex," in An Introduction to Neural and Electronic Networks, S. F.
Zornetzer, J. L. Davis and C. Lau Eds., Academic Press, San Diego, CA, 1990.

[CAVIS0] D. D. Caviglia, M. Valle, G. M. Bisio, "Effects of Weight
Discretization on the Backpropagation Learning Method: Algorithm Design and
Hardware Realization,” IEEE Int'l Joint Conf. on Neural Networks 1990, San
Diego, II-631 to II-637.

[EBERS0] S. Eberhart, "Analog Delta-Back-Propagation Neural-Network
Circuitry, " JPL Invention Report NFO-17564/7069, June 1990.

[FAGG90] F. Faggin and C. Mead, "VLSI Implementation of Neural Networks,"
in An Introductiox_l_ to Neural and Electronic Networks, S. F. Zornetzer, J. L.
Davis and C. Lau Eds., Academic Press, San Diego, CA, 1990.

[FUJI90] Y. Fujimoto, "An Enhanced Parallel Planar Lattice Architecture for
Large Scale Neural Network Simulations,” IEEE Int'l Joint Conf. on Neural
Networks 1990, San Diego, II-581 to II-586.

[GRAF88] H. P. Graf, L. D. Jackel and W. E. Hubbard, "VLSI Implementation
of a Neural Network Model," IEEE Computer, March 1988, 41-49, 1988.

[HAMMS0] D. Hammerstrom and E. Means, "System Design for a Second
Generation Neurocomputer,”" Int'l Joint Conf. on Neural Networks 1990,
Washington D.C., II-80 to II-83.

[HARTE3] E. Harth, "Order and Chaos in Neural Systems: An Approach to the
Dynamics of Higher Brain Functions," IEEE Trans. on System, Man, and
Cybernetics, vol. SMC~13, no. 5, September/October 1983, 782-789.

[HECHB88] R. Hecht-Nielsen, "Neurocomputing: Picking the Human Brain,"
IEEE Spectrum, March 1988, 36-41.

[HOPF90] J. J. Hopfield, "The Effectiveness of Analogue 'Neural Network!'
Hardware, " Network: Computation in Neural Systems, vol. 1, 27-40, 1990.

[KUNGS89] S. Y. Rung and J. N. Hwang, "A Unifying Algorithm/Architecture
for Artificial Neural Networks,”" IEEE Int'l Conf. on Acoustics, Speech and Signal
Proc., 1989, 2505-2508.

[LYONS88] R. F. Lyon and C. A. Mead, "An Analog Electronic Cochlea," IEEE
Trans. Acoustic, Speech, and Signal Proc., vol. 36, no. 7, July 1988, 1119-1134.

[MARC90] M. Marchesi, G. oOrlandi, F. Piazza, L. Pollonara and A. Uncini,
"Multi-layer Perceptrons with Discrete Weights," IEEE Int'l Joint Conf. on Neural
Networks 1990, San Diego, 1I-623 to II-630.

[MEAD8S] C. A. Mead, Analog VLSI and Neural Systems, Addison-Wesley,
Reading, MA, 1989.

[MEAD88] C. A. Mead and M. A. Mahowald, "A Silicon Model of Barly Visual
Processing," Neural Networks, vol. 1, 1988, 91-97.

[PESU90a] E. E. Pesulima, Digital I@plementation Issues of Artificial Neural
Networks, Master's Thesis, Dept. of Computer Engr., Florida Atlantic Univ.,
Boca Raton, FL, 1990.

[PESU90bL] E. E. Pesulima, "Digital Implementation Issues of Stochastic Neural
Networks," IEEE Int'l Joint Conf. on Neural Networks 1990, Washington D.C., II-

187 to I11-190.

[RUMES6] D. E. Rumelhart, G. BE. Hinton and R. J. Williams, "Learning
Internal Representation by Error Propagation," in Parallel Distributed
Processing, D. E. Rumelhart and J. L. McClelland Eds., MIT pPress, Cambridge,

Ma, vol. 1, 1986, 318-362.

[SHOE90] P. A. Shoemaker, M. J. carlin, and R. L. Shimabukuro, "Back-
Propagation Learning with Coarse Quantization of Weight Updates,” IEEE Int'l
Joint Conf. on Neural Networks 1990, Washington D.C., 1-573 to I-576.

[SKAR87] C. A. Skarda and W. J. Freeman, "How Brains Make Chaos in Order
to Make Sense of the World," Behavioral and Brain Sciences, 10, 1987, 161-195.

[vOoGL88] T. P. Vogl, J. K. Mangis, A. K. Rigler, W. T. Zink and D. L.
Alkon, "Accelerating the Convergence of the Back-Propagation Method,”
Biclogical Cybernetics, vol. 58, 1988, 63-70.

[¥YAQ90] v. Yao and W. J. Freeman, "Model of Biological Pattern Recognition
with Spatially Chaotic Dynamics," Neural Networks, vol. 3, 1990, 153-170.

Exp#] O W [G E I E I
Exp# o L u, | c G Eq N e, |1, R R A A L -
1 6 | 32 20 2 2.25 94 1.81 68
1 16 | 64 10 3 -- ---- 1.0 137
2 16 1 &4 80 1 1.92 | 98.13 1.3 49
2 16 128 | 40 3 0.75 74 0.5 65
3 16 128 | S0+ 1 1.125] 83.8 1.06 65
3 16 | 256 | 50 2 1.0 130 0.875 94
4 32| 16 10 2 EEEEEE BEE SRR 2.59 51
4 16 | 512 | &0 2 0.76 1 116,67 | 0.375| 77
5 32 | 32 30 | 1.5] 1.67 | 94.33 1. 44 55
5 32| 64 90+ 2 0.58 | 136.8 0.47 85
6 32 | 64 80 1 1.61 | 152.63 | 1.34 66
3 32| 128 | 90+ 2 0.525] 94 0.41 76
- 7 32 | 128 | 90+ 1 1.24 74.6 1.06 50
7 64 | 32 20 4 0.59 121 0.58 94
8 &4 16 10 2 LEL D B R 2.08 | 210
8 64 | 64 P0+] 2 0.51 @7.2 0.45 80
9 64 32 50 1.5 1.94 175.4 1.55 B4
9 64 128 | 90+ 2 0.46 @7 0.42 89
10 | 64 | 64 Q0+] 1.5 1.53 92.4 1.36 56
10 | 64 256 | 90+} 2.5 0.36 | 107.6 0.297] 92 .
1 64 b4 o0+ 1 1.18 143.8 | 1.02 49
Table 1.
Table 2,

Simulation results for the XOR problem.

Description:

Note :

0, : Output Resolution.

: Weight Resolution.

Convergence Rate (X).

Gain value of the Sigmoid.
Average Absolute Error Rate.

: Average lterations to Convergence.
: Minimum Absolute Error.

: Minimum Iterations.

— M= Mo T

23 >»>

Convergence of 90+% indicates that invalid convergences occur

rarely.
For rates lower than 90%, ten runs were attempted. For rates of 90+%, five valid runs were made.

$imulation results for the &4-2-4 decoder problem

k'th Layer

Weights
j'th layer

Weights
i'th tayer
Figure 1.

e R TR A N ST

1639
&
&
o
]
a
-139 T T T T 1
t 11 1 122 162 20t
Iterations
Figure 3.
j'th layer NEs
uijoi | v a.i
j'th layer SEs
l‘.li T ‘L ajuij

- i'th layer MEs

itth layer SEs

Figure 5.

3017 r148
ETA
Fi1l8
20.9
£ b
v &
Error “z
b33, 4
= 4 o 122 162 200
ler stions
Figure 2.
441 7
&
§ ke
&
§
-398 T T 14 T =
1 4l al 122 182 200
{ter ations
Figure 4.
.
j'th layer PEs
Oi 5 jui j
i'th layer PEs

Figure 6.

